Magnetic Chiral Solitons Stabilized by Oersted Field at a Thin-Film Nanocontact with Electric Current

Authors

  • C. E. Zaspel Department of Environmental Science, University of Montana-Western
  • G. M. Wysin Department of Physics, Kansas State University
  • B. A. Ivanov Institute of Magnetism, Nat. Acad. of Sci. of Ukraine, Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe64.10.933

Keywords:

skyrmion, Oersted field, nanocontact

Abstract

Static magnetic solitons in a thin film such as skyrmions are metastable states that can be stabilized through a balance of the exchange interaction and various relativistic interactions. One of the most effective stabilizing terms is the antisymmetric exchange along with others such as magnetostatic interactions in confined structures, as well as a current-carrying nanocontact on a thin ferromagnetic film. In this article, the effect of a nanocontact current on the energies of both topological (T-type) and nontopological (NT-type) solitons has been investigated. Without an antisymmetric exchange interaction, the Oersted field from a nanocontact can stabilize both soliton types with the NT soliton as the ground state. With the antisymmetric exchange, there is a critical nanocontact current, where the T soliton becomes the ground state.

References

A. Fert, N. Reyren, V. Cros.Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017). https://doi.org/10.1038/natrevmats.2017.31

L. Liu, C.-T. Chen, J.Z. Sun. Spin Hall effect tunnelling spectroscopy. Nat. Phys. 10, 561 (2014). https://doi.org/10.1038/nphys3004

X.Z. Yu, N. Kanazawa, W.Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y.Matsui, Y. Onose, Y. Tokura. Skyrmion flow near room temperature in an ultralow current density. Nat. Comm. 3, 988 (2012). https://doi.org/10.1038/ncomms1990

F. Jonietz, S. Muhlbauer, C. Pfleiderer, A. Neubauer, W. Munzer, A. Bauer, T. Adams, R. Georgii, P. Boni, R.A. Duine, K. Everschor, M. Garst, A. Rosch. Spin Transfer Torques in MnSi at Ultralow Current Densities. Science 330, 1648 (2010). https://doi.org/10.1126/science.1195709

J. Iwasaki, M. Mochizuki, N. Nagaosa. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742 (2013). https://doi.org/10.1038/nnano.2013.176

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. F? orster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schulz, G.S.D. Beach, M. Klaui. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170 (2017). https://doi.org/10.1038/nphys4000

A.A. Belavin, A.M. Polyakov. Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 22, 245 (1975).

A.S. Kovalev, A.M. Kosevich, K.V. Maslov. Magnetic vortex - topological soliton in a ferromagnet with an easy-axis anisotropy. JETP Lett. 30, 296 (1979).

V.P. Voronov, B.A. Ivanov, A.M. Kosevich. Two-dimensional dynamic (topological) solitons in ferromagnets Zh. Eksp. Teor. Fiz. 84, 2235 (1983).

B.A. Ivanov, V.A. Stefanovich. Two-dimensional small-radius solitons in magnets. Zh. Eksp. Teor. Fiz. 91, 638 (1986).

D.D. Sheka, B.A. Ivanov, F.G. Mertens. Internal modes and magnon scattering on topological solitons in two-dimensional easy-axis ferromagnets. Phys. Rev. B 64, 024432 (2001). https://doi.org/10.1103/PhysRevB.64.024432

A.M. Kosevich, B.A. Ivanov, A.S. Kovalev. Magnetic Solitons. Phys. Rep. 194, 117 (1990). https://doi.org/10.1016/0370-1573(90)90130-T

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, J. Akerman. Dynamically stabilized magnetic skyrmions. Nat. Comm. 6, 8193 (2015). https://doi.org/10.1038/ncomms9193

A.N. Bogdanov, D.A. Yablonskii. Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets. Sov.Phys. JETP 95, 178 (1989).

B.A. Ivanov, V.A. Stephanovich, A.A. Zhmudskii. Magnetic vortices: The microscopic analogs of magnetic bubbles. J. Magn. Magn. Mater. 88, 116 (1990). https://doi.org/10.1016/S0304-8853(97)90021-4

S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Boni. Skyrmion Lattice in a Chiral Magnet. Science 323, 915 (2009). https://doi.org/10.1126/science.1166767

X.Z. Yu, Y. Onose, N. Kanazawa, H.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010). https://doi.org/10.1038/nature09124

X.Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W.Z. Zhang, S. Ishiwata, Y. Matsui, Y. Tokura. Near room-temperature formation of a skyrmion crystal in thin-films of the heli-magnet FeGe. Nat. Mater. 10, 106 (2011). https://doi.org/10.1038/nmat2916

Ar. Abanov, V.L. Prokovsky. Skyrmion in a real magnetic film. Phys. Rev. B 58, R8889(R) (1998). https://doi.org/10.1103/PhysRevB.58.R8889

A.V. Bezvershenko, A.K. Kolezhuk, B.A. Ivanov. Stabilization of magnetic skyrmions by RKKY interactions. Phys. Rev. B 97, 054408 (2018). https://doi.org/10.1103/PhysRevB.97.054408

M. Ezawa. Giant Skyrmions Stabilized by Dipole-Dipole Interactions in Thin Ferromagnetic Films. Phys. Rev. Lett. 105, 197202 (2010). https://doi.org/10.1103/PhysRevLett.105.197202

Y.Y. Dai, H. Wang, P. Tao, Y. Yang, W.J. Ren, Z.D. Zhang. Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction. Phys. Rev. B 88, 054403 (2013). https://doi.org/10.1103/PhysRevB.88.054403

M. Schott, A. Bernand-Mantel, L. Ranno, S. Pizzini, J. Vogel, H. B?ea, C. Baraduc, S. Auffret, G. Gaudin, and D. Givord. The Skyrmion Switch: Turning Magnetic Skyrmion Bubbles on and off with an Electric Field Nano Lett. 17, 3006 (2017). https://doi.org/10.1021/acs.nanolett.7b00328

A. Bernand-Mantel, L. Camosi, A. Wartelle, N. Rougemaille, M. Darques, L. Ranno. The skyrmion-bubble transition in a ferromagnetic thin film. SciPost Phys. 4, 027 (2018). https://doi.org/10.21468/SciPostPhys.4.5.027

V.P. Kravchuk, D.D. Sheka, A. Kakay, O.M. Volkov, U.K. R?obler, J. van den Brink, D. Makarov, Y. Gaididei. Multiplet of Skyrmion States on a Curvilinear Defect: Reconfigurable Skyrmion Lattices. Phys. Rev. Lett. 120, 067201 (2018). https://doi.org/10.1103/PhysRevLett.120.067201

R.V. Verba, D. Navas, A. Hierro-Rodriguez, S.A. Bunyaev, B.A. Ivanov, K.Y. Guslienko, G.N. Kakazei. Overcoming the limits of vortex formation in magnetic nanodots by coupling to antidot matrix. Phys. Rev. Applied 10, 031002 (2018). https://doi.org/10.1103/PhysRevApplied.10.031002

D. Navas, R.V. Verba, A. Hierro-Rodriguez, S.A. Bunyaev, X. Zhou, A.O. Adeyeye, B.A. Ivanov, K.Y. Guslienko, G.N. Kakazei. Route to form skyrmions in soft magnetic films. APL Mater. 7, 081114 (2019). https://doi.org/10.1063/1.5093371

Downloads

Published

2019-11-01

How to Cite

Zaspel, C. E., Wysin, G. M., & Ivanov, B. A. (2019). Magnetic Chiral Solitons Stabilized by Oersted Field at a Thin-Film Nanocontact with Electric Current. Ukrainian Journal of Physics, 64(10), 933. https://doi.org/10.15407/ujpe64.10.933

Issue

Section

Physics of magnetic phenomena and physics of ferroics

Most read articles by the same author(s)