Phenomenological Theory of Relaxation in Two-Sublattice Ferrite

  • V. G. Bar’yakhtar Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science, Youth and Sport of Ukraine
  • B. A. Ivanov Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science, Youth and Sport of Ukraine
  • O. N. Golubjeva Peoples’ Friendship University of Russia
  • A. D. Sukhanov Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research
Keywords: dissipative function of two-sublattice ferrite, relaxation times for the magnetization, relaxation times for the antiferromagnetism vector

Abstract

The dissipative function of a two-sublattice ferrite was constructed. The relaxation times for the acoustic and optical branches of spin waves are calculated, as well as the relaxation times for the magnetization and antiferromagnetism vectors. The process of antiferromagnetism vector relaxation is shown to be the quickest one. The corresponding relaxation time is governed by the exchange relaxation constant and, due to the exchange interactions between atoms in the sublattices, becomes shorter owing to the dynamics of the antiferromagnetism vector. The process of ferrite magnetization relaxation is the slowest one. In the exchange approximation, the magnetization relaxation time tends to infinity, as the length of magnetization non-uniformities grows. The results obtained are compared with the experimental data on the relaxation phenomenon in GdFeCo alloy of rare-earth and transition metals.

References

A. Kirilyuk, A.V. Kimel, and Th. Rasing, Rev. Mod. Phys. 82, 2731 (2010).

https://doi.org/10.1103/RevModPhys.82.2731

J.-Y. Bigot, M. Vomir, and E. Beaurepaire, Nature Phys. 5, 515 (2009).

E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, Phys. Rev. Lett. 76, 4250 (1996).

https://doi.org/10.1103/PhysRevLett.76.4250

L.P. Pitaevskii, Sov. Phys. JETP 12, 1008 (1961)

E.A. Turov, A.V. Kolchanov, V.V. Menshenin, I.F. Mirsaev, and V.V. Nikolaev, Symmetry and Physical Properties of Antiferromagnets (Fizmatlit, Moscow, 2001) (in Russian).

V.G. Bar'yakhtar, B.A. Ivanov, and M.V. Chetkin, Usp. Fiz. Nauk 146, 417 (1985);

https://doi.org/10.3367/UFNr.0146.198507b.0417

V.G. Baryakhtar, M.V. Chetkin, B.A. Ivanov, and S.N. Gadetskii, Dynamics of Topological Magnetic Solitons. Experiment and Theory (Springer, Berlin, 1994); B.A. Ivanov, Fiz. Nizk. Temp. 31, 841 (2005).

A V. Kimel, A. Kirilyuk, A. Tsvetkov, R.V. Pisarev, and Th. Rasing, Nature 429, 850 (2004);

https://doi.org/10.1038/nature02659

A.V. Kimel, A. Kirilyuk, P.A. Usachev, R.V. Pisarev, A.M. Balbashov, and Th. Rasing, Nature 435, 655 (2005);

https://doi.org/10.1038/nature03564

R. Iida, T. Satoh, T. Shimura, K. Kuroda, B.A. Ivanov, Y. Tokunaga, and Y. Tokura, Phys. Rev. B 84, 064402 (2011).

https://doi.org/10.1103/PhysRevB.84.064402

A.M. Kalashnikova, A.V. Kimel, R.V. Pisarev, V.N. Gridnev, A. Kirilyuk, and Th. Rasing, Phys. Rev. Lett. 99, 167205 (2007).

https://doi.org/10.1103/PhysRevLett.99.167205

A.Yu. Galkin and B.A. Ivanov, Pis'ma Zh. Eksp. Teor. Fiz. 88, 286 (2008).

T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B.A. Ivanov, F. Nori, and M. Fiebig, Phys. Rev. Lett. 105, 077402 (2010).

https://doi.org/10.1103/PhysRevLett.105.077402

A.V. Kimel, B.A. Ivanov, R.V. Pisarev, P.A. Usachev, A. Kirilyuk, and Th. Rasing, Nature Phys. 5, 570 (2009).

I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H.A. D¨urr, T.A. Ostler, J. Barker, R.F.L. Evans, R.W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, Th. Rasing, and A V. Kimel, Nature 472, 205 (2011).

https://doi.org/10.1038/nature09901

M. Battiato, K. Carva, and P.M. Oppeneer, Phys. Rev. Lett. 105, 027203 (2010);

https://doi.org/10.1103/PhysRevLett.105.027203

D. Rudolf, C. La-OVorakiat, M. Battiato, R. Adam, J.M. Shaw, E. Turgut, P. Maldonado, S. Mathias, P. Grychtol, H.T. Nembach, T.J. Silva, M. Aeschlimann, H.C. Kapteyn, M.M. Murnane, C.M. Schneider, and P.M. Oppeneer, Nat. Commun. 3, 1037 (2012);

https://doi.org/10.1038/ncomms2029

M. Battiato, K. Carva, and P.M. Oppeneer, Phys. Rev. B 86, 024404 (2012).

https://doi.org/10.1103/PhysRevB.86.024404

T.A. Ostler, J. Barker, R.F.L. Evans, R. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, S. ElMoussaoui, L. Le Guyader, E. Mengotti, L.J. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D.V. Afanasiev, B.A. Ivanov, A.M. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk, Th. Rasing, and A.V. Kimel, Nat. Commun. 3, 666 (2012).

https://doi.org/10.1038/ncomms1666

L. Le Guyader, S. El Moussaoui, M. Buzzi, R.V. Chopdekar, L.J. Heyderman, A. Tsukamoto, A. Itoh, A. Kirilyuk, Th. Rasing, A.V. Kimel, and F. Nolting, Appl. Phys. Lett 101, 022410 (2012).

https://doi.org/10.1063/1.4733965

J.H. Mentink, J. Hellsvik, D.V. Afanasiev, B.A. Ivanov, A. Kirilyuk, A.V. Kimel, O. Eriksson, M.I. Katsnelson, and Th. Rasing, Phys. Rev. Lett. 108, 057202 (2012).

https://doi.org/10.1103/PhysRevLett.108.057202

L.D. Landau and E.M. Lifshits, in Collected Papers of L.D. Landau (Nauka, Moscow, 1969), Vol. 1, p. 128 (in Russian).

T.L. Gilbert, Phys. Rev. 100, 1243 (1955).

V.G. Bar'yakhtar, Zh. Eksp. Teor. Fiz. 87, 1501 (1984);

Fiz. Tverd. Tela 29, 1317 (1987);

I.V. Bar'yakhtar and V.G. Bar'yakhtar, Ukr. Fiz. Zh. 43, 1433 (1998).

V.G. Bar'yakhtar, Fiz. Nizk. Temp. 11, 1198 (1985);

Zh. Eksp. Teor. Fiz. 94, 196 (1988).

V.G. Bar'yakhtar, B.A. Ivanov, T.K. Soboleva, and A.L. Sukstanskii, Zh. Eksp. Teor. Fiz. 91, 1454 (1986);

V.G. Bar'yakhtar, B.A. Ivanov, and K.A. Safaryan, Solid State Commun. 72, 1117 (1989);

https://doi.org/10.1016/0038-1098(89)90257-3

V.G. Bar'yakhtar, B.A. Ivanov, A.L. Sukstanskii, and E.Yu. Melekhov, Phys. Rev. B 56, 619 (1997).

https://doi.org/10.1103/PhysRevB.56.619

F. Bloch, Z. Phys. 74, 295 (1932).

https://doi.org/10.1007/BF01337791

F. Dyson, Phys. Rev. 102, 1217 (1956).

https://doi.org/10.1103/PhysRev.102.1217

A.I. Akhiezer, V.G. Bar'yakhtar, and S.V. Peletminskii, Spin Waves (North Holland, Amsterdam, 1968).

B.A. Ivanov and A.L. Sukstanskii, Zh. Eksp. Teor. Fiz. 84, 370 (1983).

V.N. Krivoruchko and D.A. Yablonskii, Zh. Eksp. Teor. Fiz. 74, 2268 (1978).

V.N. Krivoruchko and D.A. Yablonskii, Fiz. Tverd. Tela 21, 1502 (1979).

D.V. Afanasiev, V.G. Bar'yakhtar, B.A. Ivanov, J.H. Mentink, J. Hellsvik, O. Eriksson, A.V. Kimel, A.I. Kirilyuk, M.I. Katsnelson, and Th. Rasing, in Abstracts of the International Conference on Functional Materials ICFM'2011, Partenit, Ukraine (2011), p. 16.

Published
2018-10-11
How to Cite
Bar’yakhtar, V., Ivanov, B., Golubjeva, O., & Sukhanov, A. (2018). Phenomenological Theory of Relaxation in Two-Sublattice Ferrite. Ukrainian Journal of Physics, 58(12), 1149. https://doi.org/10.15407/ujpe58.12.1149
Section
Solid matter