Spin Dynamics in Antiferromagnets with Domain Walls and Disclinations
DOI:
https://doi.org/10.15407/ujpe65.10.924Keywords:
antiferromagnet, disclination, spin currentAbstract
The spin dynamics in antiferromagnets with atomic dislocations and dislocation-induced spin disclinations has been discussed. It is shown how the usual sigma-model equation can be used to describe it. The dynamical states with the spatially inhomogeneous spin precession are studied. It is demonstrated that such an internal dynamics of the spin disclinations and the related domain walls can serve as a basis for creating a spin-Hall nanogenerator pumped with a spin current and characterized by a low excitation threshold.
References
E.A. Turov, A.V. Kolchanov, V.V. Menshenin, I.F. Mirsaev, and V.V. Nikolaev, Symmetry and Physical Properties of Antiferromagnets (Fizmatlit, 2001) (in Russian).
A.G. Gurevich. Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, 1973) (in Russian).
K.P. Belov, A.K. Zvezdin, A.M. Kadomtseva, R.Z. Levitin. Orientational Transitions in Rare-Earth Magnets (Nauka, 1979) (in Russian).
B.A. Ivanov. Ultrafast spin dynamics and spintronics for ferrimagnets close to the spin compensation point (Review). Low Temp. Phys. 45, 935 (2019). https://doi.org/10.1063/1.5121265
V.G. Bar'yakhtar, B.A. Ivanov, M.V. Chetkin. Dynamics of domain walls in weak ferromagnets. Usp. Fiz. Nauk 146, 417 (1985) [Sov. Phys. Uspekhi 28 (7), 563 (1985)]. https://doi.org/10.3367/UFNr.0146.198507b.0417
V.G. Bar'yakhtar, M.V. Chetkin, B.A. Ivanov, S.N. Gadetskii. Dynamics of Topological Magnetic Solitons. Experiment and Theory. Tracts in Modern Physics 129 (Springer, 1994). https://doi.org/10.1007/BFb0045993
A. Kirilyuk, A.V. Kimel, Th. Rasing. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731 (2010). https://doi.org/10.1103/RevModPhys.82.2731
B.A. Ivanov. Spin dynamics of antiferromagnets under action of femtosecond laser pulses (Review article). Low Temp. Phys. 40, 91 (2014). https://doi.org/10.1063/1.4865565
V.V. Eremenko, N.F. Kharchenko, Yu.G. Litvinenko, V.M. Naumenko. Magneto-Optics and Spectroscopy of Antiferromagnets (Naukova Dumka, 1989) (in Russian).
E.A. Turov. Kinetic, Optical, and Acoustic Properties of Antiferromagnets (Urals Branch of the Russian Academy of Sciences, 1990) (in Russian).
G.S. Krinchik, M.V. Chetkin. Transparent ferromagnets. Sov. Phys. Usp. 12, 307 (1969). https://doi.org/10.1070/PU1969v012n03ABEH003902
G.A. Smolenskii, R.V.Pisarev, I.G. Sinii. Birefringence of light in magnetically ordered crystals. Sov. Phys. Usp. 18, 410 (1975). https://doi.org/10.1070/PU1975v018n06ABEH001964
A.K. Zvezdin, V.A. Kotov. Modern Magnetooptics and Magnetooptical Materials (Institute of Physics, Bristol, 1997). https://doi.org/10.1887/075030362X
A.S. Borovik-Romanov, N.M. Kreines. Brillouin-Mandelstam scattering from thermal and excited magnons. Phys. Rep. 81, 351 (1982). https://doi.org/10.1016/0370-1573(82)90118-1
E.A. Turov, V.G. Shavrov. Broken symmetry and magnetoacoustic effects in ferroand antiferromagnetics. Sov. Phys. Usp. 26, 593 (1983). https://doi.org/10.1070/PU1983v026n07ABEH004449
I.E. Dzialoshinskii. Thermodynamical theory of "weak" ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259 (1957).
I.E. Dzialoshinskii. The magnetic structure of fluorides of the transition metals. Sov. Phys. JETP 6, 1120 (1958).
S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming et al. The 2017 terahertz science and technology roadmap. J. Phys. D: Appl. Phys. 50, 043001 (2017). https://doi.org/10.1088/1361-6463/50/4/043001
A.V. Kimel, A. Kirilyuk, A. Tsvetkov, R.V. Pisarev, Th. Rasing. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850 (2004). https://doi.org/10.1038/nature02659
A.V. Kimel, A. Kirilyuk, P.A. Usachev, R.V. Pisarev, A.M. Balbashov, Th. Rasing. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655 (2005). https://doi.org/10.1038/nature03564
A.M. Kalashnikova, A.V. Kimel, R.V. Pisarev, V.N. Gridnev, A. Kirilyuk, Th. Rasing. Impulsive generation of coherent magnons by linearly polarized light in the easy-plane antiferromagnet FeBO3. Phys. Rev. Lett. 99, 167205 (2007). https://doi.org/10.1103/PhysRevLett.99.167205
A.M. Kalashnikova, A.V. Kimel, R.V. Pisarev, V.N. Gridnev, P.A. Usachev, A. Kirilyuk, Th. Rasing. Impulsive excitation of coherent magnons and phonons by subpicosecond laser pulses in the weak ferromagnet FeBO3. Phys. Rev. B 78, 104301 (2008). https://doi.org/10.1103/PhysRevB.78.104301
T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B.A. Ivanov, F. Nori, M. Fiebig. Spin oscillations in antiferromagnetic NiO triggered bycircularly polarized light. Phys. Rev. Lett. 105, 077402 (2010).
T. Satoh, R. Iida, T. Higuchi, Y. Fujii, A. Koreeda, H. Ueda, T. Shimura, K. Kuroda, V.I. Butrim, B.A. Ivanov. Excitation of coupled spin-orbit dynamics in cobalt oxide by femtosecond laser pulses. Nat. Commun. 8, 638 (2017). https://doi.org/10.1038/s41467-017-00616-2
C. Tzschaschel, K. Otani, R. Iida, T. Shimura, H. Ueda, S. G¨unther, M. Fiebig, T. Satoh. Ultrafast optical excitation of coherent magnons in antiferromagnetic NiO. Phys. Rev. B 95, 174407 (2017). https://doi.org/10.1103/PhysRevB.95.174407
T. Satoh, R. Iida, T. Higuchi, M. Fiebig, T. Shimura. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nat. Photon. 9, 25 (2014). https://doi.org/10.1038/nphoton.2014.273
C. Tzschaschel, T. Satoh, M. Fiebig. Tracking the ultrafast motion of an antiferromagnetic order parameter. Nat. Commun. 10, 3995 (2019). https://doi.org/10.1038/s41467-019-11961-9
J. Nishitani, K. Kozuki, T. Nagashima, M. Hangyo. Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses. Appl. Phys. Lett. 96, 221906 (2010). https://doi.org/10.1063/1.3436635
T. Higuchi, N. Kanda, H. Tamaru, M. Kuwata-Gonokami. Selection rules for light-induced magnetization of a crystal with threefold symmetry: The case of antiferromagnetic NiO. Phys. Rev. Lett. 106, 047401 (2011). https://doi.org/10.1103/PhysRevLett.106.047401
J. Nishitani, T. Nagashima, M. Hangyo. Coherent control of terahertz radiation from antiferromagnetic magnons in NiO excited by optical laser pulses. Phys. Rev. B 85, 174439 (2012). https://doi.org/10.1103/PhysRevB.85.174439
A.V. Kimel, B.A. Ivanov, R.V. Pisarev, P.A. Usachev, A. Kirilyuk, Th. Rasing. Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727 (2009). https://doi.org/10.1038/nphys1369
D. Afanasiev, B.A. Ivanov, A. Kirilyuk, Th. Rasing, R.V. Pisarev, A.V. Kimel. Control of the ultrafast photoinduced magnetization across the Morin transition in DyFeO3.Phys. Rev. Lett. 116, 097401 (2016). https://doi.org/10.1103/PhysRevLett.116.097401
H.V. Gomonay, V.M. Loktev. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010). https://doi.org/10.1103/PhysRevB.81.144427
E.V. Gomonay V.M. Loktev. Spintronics of antiferromagnetic systems (Review article). Low Temp. Phys. 40, 17 (2014). https://doi.org/10.1063/1.4862467
V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018). https://doi.org/10.1103/RevModPhys.90.015005
M.B. Jungfleisch, W. Zhang, A. Hoffmann. Perspectives of antiferromagnetic spintronics. Phys. Lett. A 382, 865 (2018). https://doi.org/10.1016/j.physleta.2018.01.008
P.A. Popov, A.R. Safin, A. Kirilyuk, S.A. Nikitov, I. Lisenkov, V. Tyberkevich, A. Slavin. Voltage-controlled anisotropy and current-induced magnetization dynamics in antiferromagnetic-piezoelectric layered heterostructures. Phys. Rev. Appl. 13, 044080 (2020) https://doi.org/10.1103/PhysRevApplied.13.044080
P. Stremoukhov, A. Safin, A. Kirilyuk. THz generation and frequency manipulation in AFM/HM interfaces. J. Phys.: Conf. Ser. 1461, 012171 (2020). https://doi.org/10.1088/1742-6596/1461/1/012171
B.I. Halperin, P.C. Hohenberg. Hydrodynamic theory of spin waves. Phys. Rev. 188, 898 (1969). https://doi.org/10.1103/PhysRev.188.898
E.B. Sonin. Analogs of superfluid currents for spins and electron-hole pairs. Sov. Phys. JETP 47, 1091 (1978).
S. Takei, B. I. Halperin, A. Yacoby, Y. Tserkovnyak. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014). https://doi.org/10.1103/PhysRevB.90.094408
A. Qaiumzadeh, H. Skarsveg, C. Holmqvist, A. Brataas. Spin superfluidity in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 118, 137201 (2017). https://doi.org/10.1103/PhysRevLett.118.137201
E.B. Sonin. Spin currents and spin superfluidity. Adv. Phys. 59, 181 (2010). https://doi.org/10.1080/00018731003739943
E.B. Sonin. Superfluid spin transport in magnetically ordered solids (Review article). Low Temp. Phys. 46, 436 (2020). https://doi.org/10.1063/10.0001046
R. Khymyn, I. Lisenkov, V.S. Tiberkevich, A.N. Slavin, B.A. Ivanov. Transformation of spin current by antiferromagnetic insulators. Phys. Rev. B 93, 224421 (2016). https://doi.org/10.1103/PhysRevB.93.224421
M. Dabrowski, T. Nakano, D. M. Burn, A. Frisk, D.G. Newman, C. Klewe, Q. Li, M. Yang, P. Shafer, E. Arenholz, T. Hesjedal, G. van der Laan, Z.Q. Qiu, R.J. Hicken. Coherent transfer of spin angular momentum by evanescent spin waves within antiferromagnetic NiO. Phys. Rev. Lett. 124, 217201 (2020). https://doi.org/10.1103/PhysRevLett.124.217201
P. Wadley, B. Howells, J. Zelezny, C. Andrews, V. Hills, R.P. Campion, V. Novak, K. Olejnik, F. Maccherozzi, S.S. Dhesi, S.Y. Martin, T. Wagner, J. Wunderlich,
F. Freimuth, Y. Mokrousov et al. Investigation of magnetic anisotropy and heat dissipation in thin films of compensated antiferromagnet CuMnAs by pump-probe experiment. Science 351, 587 (2016).
D. Kriegner, K. Vyborny, K. Olejnik, H. Reichlova, V. Novak, X. Marti, J. Gazquez, V. Saidl, P. Nemec, V.V. Volobuev, G. Springholz, V. Holy, T. Jungwirth.
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016). https://doi.org/10.1038/ncomms11623
J. Li, C.B. Wilson, R. Cheng, M. Lohmann, M. Kavand, W. Yuan, M. Aldosary, N. Agladze, P.Wei, M.S. Sherwin, J. Shi. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70 (2020). https://doi.org/10.1038/s41586-020-1950-4
P. Vaidya, S. A. Morley, J. van Tol, Y. Liu, R. Cheng, A. Brataas, D. Lederman, E. del Barco. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160 (2020). https://doi.org/10.1126/science.aaz4247
V.E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, S.O. Demokritov. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028 (2012). https://doi.org/10.1038/nmat3459
V.E. Demidov, S. Urazhdin, A. Zholud, A.V. Sadovnikov, S.O. Demokritov. Nanoconstriction-based spin-Hall nanooscillator. Appl. Phys. Lett. 105, 172410 (2014). https://doi.org/10.1063/1.4901027
Z. Duan, A. Smith, L. Yang, B. Youngblood, J. Lindner, V.E. Demidov, S.O. Demokritov, I.N. Krivorotov. Nanowire spin torque oscillator driven by spin orbittorques. Nat. Commun. 5, 5616 (2014).
M. Collet, X. de Milly, O. d'Allivy Kelly, V.V. Naletov, R. Bernard, P. Bortolotti, J. Ben Youssef, V.E. Demidov, S.O. Demokritov, J.L. Prieto, M. Munoz, V. Cros,
A. Anane, G. de Loubens, O. Klein. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin-orbit torque. Nat. Commun. 7, 10377 (2016). https://doi.org/10.1038/ncomms10377
C.E. Zaspel, E.G. Galkina, B.A. Ivanov. High-frequency current-controlled vortex oscillations in ferrimagnetic disks. Phys. Rev. Appl. 12, 044019 (2019). https://doi.org/10.1103/PhysRevApplied.12.044019
E.G. Galkina, C.E. Zaspel, B.A. Ivanov, N.E. Kulagin, L.M. Lerman. Limiting velocity and dispersion law of domain walls in ferrimagnets close to the spin compensation point. JETP Lett. 110, 481 (2019). https://doi.org/10.1134/S002136401919007X
I. Lisenkov, R. Khymyn, J. Akerman, N. X. Sun, B.A. Ivanov. Subterahertz ferrimagnetic spin-transfer torque oscillator. Phys. Rev. B 100, 100409(R) (2019). https://doi.org/10.1103/PhysRevB.100.100409
R. Cheng, D. Xiao, A. Brataas. Terahertz antiferromagnetic spin Hall nano-oscillator. Phys. Rev. Lett. 116, 207603 (2016). https://doi.org/10.1103/PhysRevLett.116.207603
R. Khymyn, I. Lisenkov, V. Tyberkevych, B.A. Ivanov, A. Slavin. Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current. Sci. Rep. 7, 43705 (2017). https://doi.org/10.1038/srep43705
O.R. Sulymenko, O.V. Prokopenko, V.S. Tiberkevich, A.N. Slavin, B.A. Ivanov, R. Khymyn. Terahertz-frequency spin hall auto-oscillator based on a canted antiferromagnet. Phys. Rev. Appl. 8, 064007 (2017). https://doi.org/10.1103/PhysRevApplied.8.064007
O. Gomonay, V. Baltz, A. Brataas, Y. Tserkovnyak. Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213 (2018). https://doi.org/10.1038/s41567-018-0049-4
V. Puliafito, R. Khymyn, M. Carpentieri, B. Azzerboni, V. Tiberkevich, A. Slavin, G. Finocchio. Micromagnetic modeling of terahertz oscillations in an antiferromagnetic material driven by the spin Hall effect. Phys. Rev. B 99, 024405 (2019). https://doi.org/10.1103/PhysRevB.99.024405
R.E. Troncoso, K. Rode, P. Stamenov, J.M.D. Coey, A. Brataas. Antiferromagnetic single-layer spin-orbit torque oscillators. Phys. Rev. B 99, 054433 (2019). https://doi.org/10.1103/PhysRevB.99.054433
R. Khymyn, E. Galkina, B. Ivanov, J. Akerman. Spintorque nano-oscillator based on magnetic textures in antiferromagnets. In: Abstracts of the International conference "Nanomagnetism and spintronics - Sol-SkyMag 2018" (San Sebastian, Spain, June 18-22, 2018), p. XXX.
A.F. Andreev. Strictive superstructures in two-dimensional phase transitions. JETP Lett. 32, 640 (1980).
Y.I. Bespyatykh, I.E. Dikshtein, V.V. Tarasenko. Nonuniform magnetoelastic states in ferromagnetic plates in the region of second-order orientational phase transitions. Fiz. Tverd. Tela 23, 3013 (1981) (in Russian).
E.V. Gomonai, V.M. Loktev. On the theory of equilibrium magnetoelastic domain structure in easy-plane antiferromagnet. Fiz. Nizk. Temp. 25, 699 (1999) (in Russian). https://doi.org/10.1063/1.593777
H. Gomonay, V. Loktev. Magnetostriction and magneto-elastic domains in antiferromagnets. J. Phys. C 14, 3959 (2002). https://doi.org/10.1088/0953-8984/14/15/310
V.M. Kalita, A.F. Lozenko. On the magnetoelastic nature of antiferromagnetic domains in easy-plane crystals of iron-group dihalides. Fiz. Nizk. Temp. 27, 489 (2001) (in Russian). https://doi.org/10.1063/1.1374720
V.M. Kalita, A.F. Lozenko, S.M. Ryabchenko, P.A. Trotsenko. Magneto-elasticity and domain structure in antiferromagnetic crystals of iron-group dihalides. Ukr. Fiz. Zh. 43, 1469 (1998) (in Russian).
V.M. Kalita, A.F. Lozenko, S.M. Ryabchenko, P.A. Trotsenko. Role of defects in the formation of the multidomain state of easy-plane antiferromagnets with magneto-elastic interaction. Zh. ' Eksp. Teor. Fiz. 126, 1209 (2004) (in Russian).
V.M. Kalita, A.F. Lozenko, S.M. Ryabchenko, P.A. Trotsenko. Magneto-elasticity and domain structure in antiferromagnetic crystals of iron-group dihalides. Fiz. Nizk. Temp. 31, 1042 (2005) (in Russian). https://doi.org/10.1063/1.2008141
I.E. Dzhyaloshinskii. Domains and dislocations in antiferromagnets. JETP Lett. 25, 110 (1977).
A.S. Kovalev, A.M. Kosevich. Dislocations and domains in antiferromagnets. Low Temp. Phys. 3, 117 (1977).
B.A. Ivanov. Mesoscopic antiferromagnets: statics, dynamics, and quantum tunneling (Review). Low Temp. Phys. 31, 635 (2005). https://doi.org/10.1063/1.2008127
B.A. Ivanov, V.E. Kireev. Spin disclination in a layered antiferromagnet with a screw dislocation. JETP Lett. 73, 188 (2001). https://doi.org/10.1134/1.1368712
V.E. Kireev, B.A. Ivanov. Localized magnetic non-uniformities in an antiferromagnet with a system of dislocations. Low Temp. Phys. 45, 1256 (2019). https://doi.org/10.1063/10.0000205
A.K. Zvezdin. Dynamics of domain walls in weak ferromagnets. JETP Lett. 29, 553 (1979).
V.M. Eleonskii, N.N. Kirova, N.E. Kulagin. Accidental degeneracy of self-localized solutions of the Landau-Lifshitz equations. Zh. Eksp. Teor. Fiz. 75, 2210 (1978) (in Russian).
V.M. Yeleonsky, N.N. Kirova, N.E. Kulagin. Models of 2-sublattice magnets which can be solved exactly. Zh. Eksp. Teor. Fiz. 80, 357 (1981) (in Russian).
V.M. Yeleonsky, N.E. Kulagin. Some novel cases of the integrability of Landau-Lifshitz equations. Zh. Eksp. Teor. Fiz. 84, 616 (1983) (in Russian).
V.M. Yeleonsky, N.E. Kulagin. Integrable models in the problem for particle motion in a two-dimensional potential well. Zh. Eksp. Teor. Fiz. 85, 1437 (1983) (in Russian).
E.G. Galkina, B.A. Ivanov. Quantum tunneling in a magnetic vortex in a 2D easy-plane magnetic material. JETP Lett. 61, 511 (1995).
O.K. Dudko, A.S. Kovalev. Magnetic ordering at the stepped ferro/antiferromagnetic interface. Low Temp. Phys. 24, 422 (1998).
O.K. Dudko, A.S. Kovalev. Influence of dislocations on the magnetic structure of two-dimensional anisotropic antiferromagnets. Low Temp. Phys. 26, 603 (2000). https://doi.org/10.1063/1.1289132
E.G. Galkina, A.Yu. Galkin, B.A. Ivanov. Solitons in isotropic antiferromagnets: Beyond the sigma model. Low Temp. Phys. 34, 522 (2008). https://doi.org/10.1063/1.2957004
A.M. Kosevich, B.A. Ivanov, A.S. Kovalev. Nonlinear Magnetization Waves. Dynamic and Topological Solitons (Naukova Dumka, 1983) (in Russian).
A.B. Borisov, V.V. Kiselev. Nonlinear Waves, Solitons, and Localized Structures in Magnets. In 2 vols (Urals Branch of the Russian Academy of Sciences, 2009) (in Russian).
I.V. Bar'yakhtar, B.A. Ivanov. Nonlinear magnetization waves in the antiferromagnet. Sov. J. Low Temp. Phys. 5, 361 (1979).
H.-J. Mikeska. Non-linear dynamics of classical one-dimensional antiferromagnets. J. Phys. C 13, 2913 (1980). https://doi.org/10.1088/0022-3719/13/15/015
A.F. Andreev, V.I. Marchenko. Symmetry and the macroscopic dynamics of magnetic materials. Usp. Fiz. Nauk 130, 39 (1980) (in Russian). https://doi.org/10.3367/UFNr.0130.198001b.0039
B.A. Ivanov, A.K. Kolezhuk. Solitons in low-dimensional antiferromagnets. Fiz. Nizk. Temp. 21, 355 (1995) (in Russian).
H.-J. Mikeska, M. Steiner. Solitary excitations in one-dimensional magnets. Adv. Phys. 40, 191 (1991). https://doi.org/10.1080/00018739100101492
E.G. Galkina, B.A. Ivanov. Dynamic solitons in antiferromagnets (Review article). Low Temp. Phys. 44, 618 (2018). https://doi.org/10.1063/1.5041427
E.G. Galkina, R.V. Ovcharov, B.A. Ivanov. Precessional one-dimensional solitons in antiferromagnets with low dynamic symmetry. Low Temp. Phys. 43, 1283 (2017). https://doi.org/10.1063/1.5010314
O.Y. Gorobets, Y.I. Gorobets. 3D analytical model of skyrmion-like structures in an antiferromagnet with DMI. J. Magn. Magn. Mater. 507, 166800 (2020). https://doi.org/10.1016/j.jmmm.2020.166800
B.A. Ivanov. Spin dynamics of antiferromagnets and ultrafast spintronics. J. Exp. Theor. Phys. 131, 95 (2020). https://doi.org/10.1134/S1063776120070079
A. Slavin. V. Tiberkevich. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875 (2009). https://doi.org/10.1109/TMAG.2008.2009935
S. Bonetti, P. Muduli, F. Mancoff, J. Akerman. Spin-torque oscillator linewidth narrowing under current modulation. Appl. Phys. Lett. 94, 102507 (2009). https://doi.org/10.1063/1.3097238
Y. Tserkovnyak, A. Brataas, G.E.W. Bauer. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002). https://doi.org/10.1103/PhysRevLett.88.117601
M.A. Hoefer, M. Sommacal, T.J. Silva. Propagation and control of nanoscale magnetic-droplet solitons. Phys. Rev. B 85, 214433 (2012). https://doi.org/10.1103/PhysRevB.85.214433
M. Mohseni, S.R. Sani, J. Persson, T.N.A. Nguyen, S. Chung, Y. Pogoryelov, P.K. Muduli, E. Iacocca, A. Eklund, R.K. Dumas, S. Bonetti, A. Deac, M.A. Hoefer, J. Akerman. Spin transfer torque generated magnetic droplet solitons (invited). Science 339, 1295 (2013). https://doi.org/10.1126/science.1230155
Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, J. Akerman. Dynamically stabilized magnetic skyrmions. Nat. Commun. 6, 8193 (2015). https://doi.org/10.1038/ncomms9193
A.B. Borisov, S.N. Ionov. Vortices and vortex dipoles in 2D sine-Gordon model. Physica D 99, 18 (1996). https://doi.org/10.1016/S0167-2789(96)00094-2
A.B. Borisov, V.V. Kiseliev. Vortex dipoles on a soliton lattice background: Solution of the boundary-value problem by inverse spectral transform. Physica D 111, 96 (1998). https://doi.org/10.1016/S0167-2789(97)80007-3
L. Hu, H. Huang, Z. Wang, W. Jiang, X. Ni, Y. Zhou, V. Zielasek, M.G. Lagally, B. Huang, F. Liu. Ubiquitous spin-orbit coupling in a screw dislocation with high spin coherency. Phys. Rev. Lett. 121, 066401 (2018). https://doi.org/10.1103/PhysRevLett.121.066401
O. Gomonay. Crystals with defects may be good for spintronics. Physics 11, 78 (2018). https://doi.org/10.1103/Physics.11.78
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.