Chiral Asymmetry in Relativistic Matter in a Magnetic Field

Authors

  • E. V. Gorbar Department of Physics, Taras Shevchenko National University of Kyiv, Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

Keywords:

dense relativistic matter, magnetic field, axial current

Abstract

In this mini review, we consider chiral asymmetry in the normal ground state of magnetized relativistic matter in the NJL model with local four-fermion interaction and QED. It is shown that the chiral shift parameter associated with the relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations for opposite chirality fermions is dynamically generated in the normal ground state. This contribution affects fermions in all Fermi levels, including those around the Fermi surface, and contributes to the non-dissipative axial current taking place in relativistic matter in a magnetic field. The chiral asymmetry of the normal ground state in QED matter in a magnetic field is characterized by an additional chiral structure. It formally looks like that of the chiral chemical potential, but is an odd function of the longitudinal component of momentum along the magnetic field. The origin of this parity-even chiral structure is directly connected with the long-range character of the QED interaction. The leading radiative corrections to the chiral separation effect in QED are calculated, and the form of the Fermi surface in the weak magnetic field is determined.

References

P.M. Woods, C. Thompson. Soft gamma repeaters and anomalous X-ray pulsars: Magnetar candidates, in Compact Stellar X-ray Sources, edited by W.H.G. Lewin and M. van der Klis (Cambridge University Press, 2006), pp. 547–586 [astro-ph/0406133].

S. Mereghetti. The strongest cosmic magnets: Soft gamma-ray repeaters and anomalous X-ray pulsars. Astron. Astrophys. Rev. 15, 225 (2008) [DOI: 10.1007/s00159-008-0011-z].

D. Page, S. Reddy. Dense matter in compact stars: Theoretical developments and observational constraints. Ann. Rev. Nucl. Part. Sci. 56, 327 (2006) [DOI: 10.1146/an-nurev.nucl.56.080805.140600].

V. Skokov, A. Illarionov, V. Toneev. Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 24, 5925 (2009) [DOI: 10.1142/ S0217751X09047570].

D. Kharzeev. Parity violation in hot QCD: Why it can happen, and how to look for it. Phys. Lett. B 633, 260 (2006) [DOI: 10.1016/j.physletb.2005.11.075].

D. Kharzeev, A. Zhitnitsky. Charge separation induced by P-odd bubbles in QCD matter. Nucl. Phys. A 797, 67 (2007) [DOI: 10.1016/j.nuclphysa.2007.10.001].

S.L. Adler. Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426 (1969) [DOI: 10.1103/Phys-Rev.177.2426]; J.S. Bell, R. Jackiw. A PCAC puzzle: п0 → yy in the q-model. Nuovo Cim. A 60, 47 (1969) [DOI: 10.1007/BF02823296].

K. Fukushima, D.E. Kharzeev, H.J. Warringa. The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008) [DOI: 10.1103/PhysRevD.78.074033].

D.E. Kharzeev, L.D. McLerran, H.J. Warringa. The effects of topological charge change in heavy ion collisions: “Event by event P and CP violation”. Nucl. Phys. A 803, 227 (2008) [DOI: 10.1016/j.nuclphysa.2008.02.298].

K. Fukushima. Views of the chiral magnetic effect, in Strongly Interacting Matter in Magnetic Fields, edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee. Lect. Notes Phys. (Springer, 2013), 871, pp. 241–259 [DOI: 10.1007/978-3-642-37305-3_9].

B.I. Abelev et al. [STAR Collaboration]. Azimuthal charged-particle correlations and possible local strong parity violation. Phys. Rev. Lett. 103, 251601 (2009) [DOI:/PhysRevLett.103.251601];

Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions. Phys. Rev. C 81, 054908 (2010) [DOI: 10.1103/PhysRevC.81.054908].

L. Adamczyk et al. [STAR Collaboration]. Measurement of charge multiplicity asymmetry correlations in high energy nucleus-nucleus collisions at 200 GeV. Phys. Rev. C 89, 044908 (2014) [DOI: 10.1103/PhysRevC.89.044908].

G. Wang [STAR Collaboration]. Search for chiral magnetic effects in high-energy nuclear collisions. Nucl. Phys. A 904–905, 248 (2013) [DOI: 10.1016/j.nuclphysa.2013.01.069].

H. Ke [STAR Collaboration]. Charge asymmetry dependency of п+/п− elliptic flow in Au + Au collisions at √SNN = 200 GeV. J. Phys. Conf. Ser. 389, 012035 (2012) [DOI: 10.1088/1742-6596/389/1/012035].

I. Selyuzhenkov [ALICE Collaboration]. Anisotropic flow and other collective phenomena measured in Pb–Pb collisions with ALICE at the LHC. Prog. Theor. Phys. Suppl. 193, 153 (2012) [arXiv: 1111.1875 [nucl-ex]].

S.A. Voloshin. Parity violation in hot QCD: How to detect it. Phys. Rev. C 70, 057901 (2004) [DOI: 10.1103/Phys-RevC.70.057901].

D.E. Kharzeev. Topologically induced local P and CP violation in QCD×QED. Annals Phys. 325, 205 (2010) [DOI: 10.1016/j.aop.2009.11.002]; K. Fukushima, D.E. Kharzeev, H.J. Warringa. Electric-current susceptibility and the chiral magnetic effect. Nucl. Phys. A 836, 311 (2010) [DOI: 10.1016/j.nuclphysa.2010.02.003].

J. Liao. Anomalous transport effects and possible environmental symmetry “violation” in heavy ion collisions. arXiv:1401.2500 [hep-ph].

A. Vilenkin. Cancellation of equilibrium parity violating currents. Phys. Rev. D 22, 3067 (1980) [DOI: 10.1103/PhysRevD.22.3067].

M.A. Metlitski, A.R. Zhitnitsky. Anomalous axion interactions and topological currents in dense matter. Phys. Rev. D 72, 045011 (2005) [DOI: 10.1103/PhysRevD.72.045011].

G.M. Newman, D.T. Son. Response of strongly-interacting matter to magnetic field: Some exact results. Phys. Rev. D 73, 045006 (2006) [DOI: 10.1103/PhysRevD.73.045006].

E.V. Gorbar, V.A. Miransky, I.A. Shovkovy. Chiral asymmetry and axial anomaly in magnetized relativistic matter. Phys. Lett. B 695, 354 (2011) [DOI: 10.1016/j.physletb.2010.11.022].

Y. Burnier, D.E. Kharzeev, J. Liao, H.-U. Yee. Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions. Phys. Rev. Lett. 107, 052303 (2011) [DOI: 10.1103/PhysRevLett.107.052303].

G. Basar, G.V. Dunne, The chiral magnetic effect and axial anomalies, in Strongly Interacting Matter in Magnetic Fields, edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee. Lect. Notes Phys. 871 (Springer, 2013), pp. 261–294 [DOI: 10.1007/978-3-642-37305-3_10].

J. Ambjorn, J. Greensite, C. Peterson. The axial anomaly and the lattice Dirac sea. Nucl. Phys. B 221, 381 (1983) [DOI: 10.1016/0550-3213(83)90585-0]; N. Sadooghi, A. Jafari Salim. Axial anomaly of QED in a strong magnetic field and noncommutative anomaly. Phys. Rev. D 74, 085032 (2006) [DOI: 10.1103/PhysRevD.74.085032].

E.V. Gorbar, V.A. Miransky, I.A. Shovkovy. Chiral asymmetry of the Fermi surface in dense relativistic matter in a magnetic field. Phys. Rev. C 80, 032801(R) (2009) [DOI: 10.1103/PhysRevC.80.032801].

E.V. Gorbar, V.A. Miransky, I.A. Shovkovy. Normal ground state of dense relativistic matter in a magnetic field. Phys. Rev. D 83, 085003 (2011) [DOI: 10.1103/Phys-RevD.83.085003].

A. Rebhan, A. Schmitt, S.A. Stricker. Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model. JHEP 01, 026 (2010) [DOI: 10.1007/JHEP01(2010)026].

V.A. Rubakov. On chiral magnetic effect and holography. arXiv: 1005.1888 [hep-ph].

D.K. Hong. Anomalous currents in dense matter under a magnetic field. Phys. Lett. B 699, 305 (2011) [DOI: 10.1016/j.physletb.2011.04.010].

K. Fukushima, M. Ruggieri. Dielectric correction to the chiral magnetic effect. Phys. Rev. D 82, 054001 (2010) [DOI: 10.1103/PhysRevD.82.054001].

X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011) [DOI: 10.1103/PhysRevB.83.205101].

A.A. Burkov, M.D. Hook, L. Balents. Topological nodal semimetals. Phys. Rev. B 84, 235126 (2011) [DOI: 10.1103/PhysRevB.84.235126].

A.A. Burkov, L. Balents. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011) [DOI: 10.1103/PhysRevLett.107.127205].

M.M. Vazifeh, M. Franz. Electromagnetic response of Weyl semimetals. Phys. Rev. Lett. 111, 027211 (2013) [DOI: 10.1103/PhysRevLett.111.027201].

P.E.C. Ashby, J.P. Carbotte. Magneto-optical conductivity of Weyl semimetals. Phys. Rev. B 87, 245131 (2013) [DOI: 10.1103/PhysRevB.87.245131].

G. Basar, D.E. Kharzeev, Ho-Ung Yee. Triangle anomaly inWeyl semi-metals. Phys. Rev. B 89, 035142 (2014) [DOI: 10.1103/PhysRevB.89.035142].

S.A. Parameswaran, T. Grover, D.A. Abanin, D.A. Pesin, A. Vishwanath. Probing the chiral anomaly with nonlocal transport in three dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014) [arXiv: 1306.1234 [cond-mat.str-el]].

E.V. Gorbar, V.A. Miransky, I.A. Shovkovy. Engineering Weyl nodes in Dirac semimetals by a magnetic field. Phys. Rev. D 88, 165105 (2013) [DOI: 10.1103/Phys-RevB.88.165105].

E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Xinyang Wang. Radiative corrections to chiral separation effect in QED. Phys. Rev. D 88, 025025 (2013) [DOI: 10.1103/PhysRevD.88.025025].

E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Xinyang Wang. Chiral asymmetry in QED matter in a magnetic field. Phys. Rev. D 88, 025043 (2013) [DOI: 10.1103/Phys-RevD.88.025043].

V.P. Gusynin, V.A. Miransky, I.A. Shovkovy. Catalysis of dynamical flavor symmetry breaking by a magnetic field in 2 + 1 dimensions. Phys. Rev. Lett. 73, 3499 (1994) [DOI: 10.1103/PhysRevLett.73.3499]; Dynamical flavor symmetry breaking by a magnetic field in 2 + 1 dimensions. Phys. Rev. D 52, 4718 (1995) [DOI: 10.1103/PhysRevD.52.4718].

V.P. Gusynin, V.A. Miransky, I.A. Shovkovy. Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in 3 + 1 dimensions. Phys. Lett. B 349, 477 (1995) [DOI: 10.1016/0370-2693(95)00232-A]; Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field. Nucl. Phys. B 462, 249 (1996) [DOI: 10.1016/0550-3213(96)00021-1].

M.E. Peskin, D.V. Schroeder. An Introduction To Quantum Field Theory (Westview Press, 1995) [ISBN-13: 978-0813350196].

B.L. Ioffe. Axial anomaly: The modern status. Int. J. Mod. Phys. A 21, 6249 (2006) [DOI: 10.1142/S0217751X06035051].

J.S. Schwinger. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951) [DOI: 10.1103/Phys-Rev.82.664].

E.C.G. Stueckelberg. Theory of the radiation of photons of small arbitrary mass. Helv. Phys. Acta 30, 209 (1957).

S.L. Adler, W.A. Bardeen. Absence of higher order corrections in the anomalous axial vector divergence equation. Phys. Rev. 182, 1517 (1969) [DOI: 10.1103/Phys-Rev.182.1517].

I.S. Gradshtein, I.M. Ryzhik. Table of Integrals, Series and Products (Academic Press, 1994) [ISBN: 978-0122947551, 012294755X].

K.Y. Kim, B. Sahoo, H.U. Yee. Holographic chiral magnetic spiral. JHEP 10, 005 (2010) [DOI: 10.1007/JHEP10(2010)005].

G. Ba¸sar, G.V. Dunne, D.E. Kharzeev. Chiral magnetic spirals. Phys. Rev. Lett. 104, 232301 (2010) [DOI: 10.1103/PhysRevLett.104.232301].

S.Weinberg. TheQuantumTheory of Fields.Vol. 1: Foundations (Cambridge University Press, 1995), pp. 564–596.

Downloads

Published

2019-12-09

How to Cite

Gorbar, E. V. (2019). Chiral Asymmetry in Relativistic Matter in a Magnetic Field. Ukrainian Journal of Physics, 11(1), 3. Retrieved from https://ujp.bitp.kiev.ua/index.php/ujp/article/view/2019656

Issue

Section

Reviews