Influence of DC Electric Field on the Hysteresis of Light-Induced Fr´eedericksz Transition in a Nematic Cell

  • M. F. Ledney Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O. S. Tarnavskyy Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V. V. Khimich Taras Shevchenko National University of Kyiv, Faculty of Physics
Keywords: nematic liquid crystals, light-induced Fr´eedericksz transition, hysteresis

Abstract

The influence of an external dc electric field on the hysteresis of the light-induced Fr´eedericksz transition in a nematic liquid crystal cell in the field of a light beam with a finite diameter has been studied. The external electric field orientations perpendicular to the cell surface and along it, in the direction of the incident light polarization, are considered. The dependences of the Fr´eedericksz transition thresholds for the increasing and decreasing intensities of the incident light on the electric field strength and the transversal light beam size are obtained numerically. The values of transversal light beam size and electric field strength, for which the Fr´eedericksz transition has a hysteretic character, are found. The hysteresis loop width is shown to increase if the dc electric field perpendicular to the cell surface grows. At the same time, the hysteresis loop width decreases, if the electric field is oriented along the cell surface.

References

L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, New York, 1994). https://doi.org/10.1007/978-1-4612-2692-5

I.-C. Khoo, Liquid Crystals (Wiley, Hoboken, NJ, 2007). https://doi.org/10.1002/0470084030

Y.-Ki Ha,Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, Appl. Phys. Lett. 79, 15 (2001).

M. Peccianti, C. Conti, G. Assanto, A. de Luca, and C. Umeton, Appl. Phys. Lett. 81, 3335 (2002). https://doi.org/10.1063/1.1519101

M.J. Escuti, J. Qi, and G.P. Crawford, Opt. Lett. 28, 522 (2003). https://doi.org/10.1364/OL.28.000522

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, Appl. Phys. Lett. 84, 1844 (2004). https://doi.org/10.1063/1.1686891

B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. BaehrJones, D. Psaltis, and A. Scherer, Appl. Phys. Lett. 85, 360 (2004). https://doi.org/10.1063/1.1772869

D. McPhail, M. Straub, and M. Gu, Appl. Phys. Lett. 86, 051103 (2005). https://doi.org/10.1063/1.1861131

A. Fratalocchi, G. Assanto, K.A. Brzdakiewicz, and M.A. Karpierz, Opt. Express 13, 1808 (2005). https://doi.org/10.1364/OPEX.13.001808

S.P. Palto, Usp. Fiz. Nauk 175, 784 (2005). https://doi.org/10.3367/UFNr.0175.200507i.0784

A.S. Zolot'ko, V.F. Kitaeva, N. Kroo, N.N. Sobolev, and L. Chillag, Pis'ma Zh. Eksp. Teor. Fiz. 32, 170 (1980).

S.D. Durbin, S.M. Arakelian, and Y.R. Shen, Phys. Rev. Lett. 47, 1411 (1981). https://doi.org/10.1103/PhysRevLett.47.1411

B.Ya. Zeldovich, N.V. Tabiryan, and Yu.S. Chilingaryan, Zh. Eksp. Teor. Fiz. ` 81, 72 (1981).

I.C. Khoo, Phys. Rev. A 23, 2077 (1981). https://doi.org/10.1103/PhysRevA.23.2077

B.Ya. Zeldovich and N.V. Tabiryan, Zh. Eksp. Teor. Fiz. ` 82, 1126 (1982).

H.L. Ong, Phys.Rev. A 28, 2393 (1983). https://doi.org/10.1103/PhysRevA.28.2393

H.L. Ong, Phys. Rev. A 31, 3450 (1985). https://doi.org/10.1103/PhysRevA.31.3450

A.J. Karn, S.M. Arakelian, Y.R. Shen, and H.L. Ong, Phys. Rev. Lett. 57, 448 (1986). https://doi.org/10.1103/PhysRevLett.57.448

P.-Y. Wang, H.-J. Zhang, and J.-H. Dai, Opt. Lett. 12, 654 (1987). https://doi.org/10.1364/OL.12.000654

S.-H. Chen and J.J. Wu, Appl. Phys. Lett. 52, 1998 (1988). https://doi.org/10.1063/1.99599

J.J. Wu and S.-H. Chen, J. Appl.Phys. 66, 1065 (1989). https://doi.org/10.1063/1.343493

J.J. Wu, G.-S. Ong, and S.-H. Chen, Appl. Phys. Lett. 53, 1999 (1988). https://doi.org/10.1063/1.100323

A.S. Zolot'ko, M.P. Smayev, V.F. Kitaeva, and M.I. Barnik, Quant. Electr. 34, 1151 (2004). https://doi.org/10.1070/QE2004v034n12ABEH002743

I. Budagovsky, D. Pavlov, S. Shvetsov, M. Smayev, A. Zolot'ko, N. Boiko, and M. Barnik, Appl. Phys. Lett. 101, 021112 (2012). https://doi.org/10.1063/1.4736409

B.J. Frisken and P. Palffy-Muhoray, Phys. Rev. A 40, 6099 (1989). https://doi.org/10.1103/PhysRevA.40.6099

H.L. Ong, R.B. Meyer, and A.J. Hurd, J. Appl. Phys. 55, 2809 (1984). https://doi.org/10.1063/1.333319

G. Abbate, P. Maddalena, L. Marrucci, L. Saetta, and E. Santamato, J. Phys. II (Paris) 1, 543 (1991).

B. Piccirillo and E. Santamato, Phys. Rev. E 69, 056613 (2004). https://doi.org/10.1103/PhysRevE.69.056613 https://www.ncbi.nlm.nih.gov/pubmed/15244969

V. Ilyina, S.J. Cox, and T.J. Sluckin, Opt. Commun. 260, 474 (2006). https://doi.org/10.1016/j.optcom.2005.11.028

E.A. Babayan, I.A. Budagovsky, S.A. Shvetsov, M.P. Smayev, A.S. Zolot'ko, N.I. Boiko, and M.I. Barnik, Phys. Rev. E 82, 061705 (2010). https://doi.org/10.1103/PhysRevE.82.061705 https://www.ncbi.nlm.nih.gov/pubmed/21230682

A.A. Berezovskaya, S.N. Yezhov, M.F. Ledney, and I.P. Pinkevych, Funct. Mater. 14, 510 (2007).

M.F. Ledney and A.S. Tarnavskyy, Kristallogr. 55, 337 (2010).

M.F. Ledney and O.S. Tarnavskyy, Ukr. Fiz. Zh. 56, 30 (2011).

J. Shi and H. Yue, Phys. Rev. E 62, 689 (2000). https://doi.org/10.1103/PhysRevE.62.689 https://www.ncbi.nlm.nih.gov/pubmed/11088506

M.F. Ledney and O.S. Tarnavskyy, Liq. Cryst. 39, 1482 (2012). https://doi.org/10.1080/02678292.2012.721902

B.J. Frisken and P. Palffy-Muhoray, Phys. Rev. A 39, 1513 (1989). https://doi.org/10.1103/PhysRevA.39.1513

Published
2019-01-08
How to Cite
Ledney, M., Tarnavskyy, O., & Khimich, V. (2019). Influence of DC Electric Field on the Hysteresis of Light-Induced Fr´eedericksz Transition in a Nematic Cell. Ukrainian Journal of Physics, 61(2), 117. https://doi.org/10.15407/ujpe61.02.0117
Section
Soft matter