Магнітні хіральні солітони в тонкоплівковому наноконтакті з електричним струмом, стабілізовані полем Ерстеда

Автор(и)

  • C. E. Zaspel Department of Environmental Science, University of Montana-Western
  • G. M. Wysin Department of Physics, Kansas State University
  • B. A. Ivanov Institute of Magnetism, Nat. Acad. of Sci. of Ukraine, Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe64.10.933

Ключові слова:

skyrmion, Oersted field, nanocontact

Анотація

Статичнi магнiтнi солiтони в тонкiй плiвцi, такi як скiрмiон, являють собою метастабiльнi стани, якi можуть бути стабiлiзованi за допомогою балансу обмiнної взаємодiї i рiзних релятивiстських взаємодiй. Одним з найбiльш ефективних стабiлiзуючих членiв є антисиметричний обмiн поряд з iншими, такими як магнiтостатичнi взаємодiї в обмежених структурах, а також у наноконтактi iз струмом на тонкiй феромагнiтнiй плiвцi. В данiй статтi дослiджено вплив струму наноконтакту на енергiю як топологiчних (T-типу), так i нетопологiчних (NT-типу) солiтонiв. Без антисиметричної обмiнної взаємодiї поле Ерстеда наноконтакту може стабiлiзувати обидва типи солiтонiв, NT-солiтони є основним станом. При наявностi антисиметричного обмiну виникає критичний струм наноконтакту, при якому T-солiтон стає основним станом.

Посилання

A. Fert, N. Reyren, V. Cros.Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017). https://doi.org/10.1038/natrevmats.2017.31

L. Liu, C.-T. Chen, J.Z. Sun. Spin Hall effect tunnelling spectroscopy. Nat. Phys. 10, 561 (2014). https://doi.org/10.1038/nphys3004

X.Z. Yu, N. Kanazawa, W.Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y.Matsui, Y. Onose, Y. Tokura. Skyrmion flow near room temperature in an ultralow current density. Nat. Comm. 3, 988 (2012). https://doi.org/10.1038/ncomms1990

F. Jonietz, S. Muhlbauer, C. Pfleiderer, A. Neubauer, W. Munzer, A. Bauer, T. Adams, R. Georgii, P. Boni, R.A. Duine, K. Everschor, M. Garst, A. Rosch. Spin Transfer Torques in MnSi at Ultralow Current Densities. Science 330, 1648 (2010). https://doi.org/10.1126/science.1195709

J. Iwasaki, M. Mochizuki, N. Nagaosa. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742 (2013). https://doi.org/10.1038/nnano.2013.176

K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, O.A. Tretiakov, J. F? orster, R.M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schulz, G.S.D. Beach, M. Klaui. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170 (2017). https://doi.org/10.1038/nphys4000

A.A. Belavin, A.M. Polyakov. Metastable states of two-dimensional isotropic ferromagnets. JETP Lett. 22, 245 (1975).

A.S. Kovalev, A.M. Kosevich, K.V. Maslov. Magnetic vortex - topological soliton in a ferromagnet with an easy-axis anisotropy. JETP Lett. 30, 296 (1979).

V.P. Voronov, B.A. Ivanov, A.M. Kosevich. Two-dimensional dynamic (topological) solitons in ferromagnets Zh. Eksp. Teor. Fiz. 84, 2235 (1983).

B.A. Ivanov, V.A. Stefanovich. Two-dimensional small-radius solitons in magnets. Zh. Eksp. Teor. Fiz. 91, 638 (1986).

D.D. Sheka, B.A. Ivanov, F.G. Mertens. Internal modes and magnon scattering on topological solitons in two-dimensional easy-axis ferromagnets. Phys. Rev. B 64, 024432 (2001). https://doi.org/10.1103/PhysRevB.64.024432

A.M. Kosevich, B.A. Ivanov, A.S. Kovalev. Magnetic Solitons. Phys. Rep. 194, 117 (1990). https://doi.org/10.1016/0370-1573(90)90130-T

Y. Zhou, E. Iacocca, A.A. Awad, R.K. Dumas, F.C. Zhang, H.B. Braun, J. Akerman. Dynamically stabilized magnetic skyrmions. Nat. Comm. 6, 8193 (2015). https://doi.org/10.1038/ncomms9193

A.N. Bogdanov, D.A. Yablonskii. Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets. Sov.Phys. JETP 95, 178 (1989).

B.A. Ivanov, V.A. Stephanovich, A.A. Zhmudskii. Magnetic vortices: The microscopic analogs of magnetic bubbles. J. Magn. Magn. Mater. 88, 116 (1990). https://doi.org/10.1016/S0304-8853(97)90021-4

S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Boni. Skyrmion Lattice in a Chiral Magnet. Science 323, 915 (2009). https://doi.org/10.1126/science.1166767

X.Z. Yu, Y. Onose, N. Kanazawa, H.H. Park, J.H. Han, Y. Matsui, N. Nagaosa, Y. Tokura. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901 (2010). https://doi.org/10.1038/nature09124

X.Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W.Z. Zhang, S. Ishiwata, Y. Matsui, Y. Tokura. Near room-temperature formation of a skyrmion crystal in thin-films of the heli-magnet FeGe. Nat. Mater. 10, 106 (2011). https://doi.org/10.1038/nmat2916

Ar. Abanov, V.L. Prokovsky. Skyrmion in a real magnetic film. Phys. Rev. B 58, R8889(R) (1998). https://doi.org/10.1103/PhysRevB.58.R8889

A.V. Bezvershenko, A.K. Kolezhuk, B.A. Ivanov. Stabilization of magnetic skyrmions by RKKY interactions. Phys. Rev. B 97, 054408 (2018). https://doi.org/10.1103/PhysRevB.97.054408

M. Ezawa. Giant Skyrmions Stabilized by Dipole-Dipole Interactions in Thin Ferromagnetic Films. Phys. Rev. Lett. 105, 197202 (2010). https://doi.org/10.1103/PhysRevLett.105.197202

Y.Y. Dai, H. Wang, P. Tao, Y. Yang, W.J. Ren, Z.D. Zhang. Skyrmion ground state and gyration of skyrmions in magnetic nanodisks without the Dzyaloshinsky-Moriya interaction. Phys. Rev. B 88, 054403 (2013). https://doi.org/10.1103/PhysRevB.88.054403

M. Schott, A. Bernand-Mantel, L. Ranno, S. Pizzini, J. Vogel, H. B?ea, C. Baraduc, S. Auffret, G. Gaudin, and D. Givord. The Skyrmion Switch: Turning Magnetic Skyrmion Bubbles on and off with an Electric Field Nano Lett. 17, 3006 (2017). https://doi.org/10.1021/acs.nanolett.7b00328

A. Bernand-Mantel, L. Camosi, A. Wartelle, N. Rougemaille, M. Darques, L. Ranno. The skyrmion-bubble transition in a ferromagnetic thin film. SciPost Phys. 4, 027 (2018). https://doi.org/10.21468/SciPostPhys.4.5.027

V.P. Kravchuk, D.D. Sheka, A. Kakay, O.M. Volkov, U.K. R?obler, J. van den Brink, D. Makarov, Y. Gaididei. Multiplet of Skyrmion States on a Curvilinear Defect: Reconfigurable Skyrmion Lattices. Phys. Rev. Lett. 120, 067201 (2018). https://doi.org/10.1103/PhysRevLett.120.067201

R.V. Verba, D. Navas, A. Hierro-Rodriguez, S.A. Bunyaev, B.A. Ivanov, K.Y. Guslienko, G.N. Kakazei. Overcoming the limits of vortex formation in magnetic nanodots by coupling to antidot matrix. Phys. Rev. Applied 10, 031002 (2018). https://doi.org/10.1103/PhysRevApplied.10.031002

D. Navas, R.V. Verba, A. Hierro-Rodriguez, S.A. Bunyaev, X. Zhou, A.O. Adeyeye, B.A. Ivanov, K.Y. Guslienko, G.N. Kakazei. Route to form skyrmions in soft magnetic films. APL Mater. 7, 081114 (2019). https://doi.org/10.1063/1.5093371

Downloads

Опубліковано

2019-11-01

Як цитувати

Zaspel, C. E., Wysin, G. M., & Ivanov, B. A. (2019). Магнітні хіральні солітони в тонкоплівковому наноконтакті з електричним струмом, стабілізовані полем Ерстеда. Український фізичний журнал, 64(10), 933. https://doi.org/10.15407/ujpe64.10.933

Номер

Розділ

Фізика магнітних явищ і фізика фероїків