Influence of Nonuniform Magnetic Field on the Helicon Discharge Excited by Various Antennas

  • V. F. Virko Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
  • Yu. V. Virko Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
Keywords: helicon discharge, nonuniform magnetic field, induction antennas

Abstract

The influence of a nonuniform magnetic field, which increases with the distance from an inductive antenna, on a helicon discharge has been studied. The discharge was excited in the azimuthally symmetric mode of helicon waves, m = 0, making use of antennas of two different types. It is shown that if the discharge is produced by a loop antenna, which supplies the RF energy through the side boundary of plasma and perpendicularly to the external magnetic field, then the ionization is concentrated at the discharge periphery. Under those conditions, the imposing of a nonuniform magnetic field reduces the loss of ionizing electrons at the wall and enhances the plasma generation. If the discharge is excited with a planar antenna along the magnetic field, then the main ionization occurs in the inner plasma region around the axis. In this case, an increase in the plasma density, if any, may be a result of the plasma contraction in the magnetic field with force lines convergent to the axis.

References

J.E. Stevens, M.J. Sowa, J.L. Cecchi. Helicon plasma source excited by a flat spiral coil. J. Vac. Sci. Technol. A 13, 2476 (1995). https://doi.org/10.1116/1.579491

V.F. Virko, V.M. Slobodyan, K.P. Shamrai, Yu.V. Virko. Helicon discharge excited by a planar antenna in a bounded volume. Probl. At. Sci. Technol. 6, 130 (2014).

G. Chevalier, F.F. Chen. Experimental modeling of inductive discharges. J. Vac. Sci. Technol. A 11, 1165 (1993). https://doi.org/10.1116/1.578488

S.V. Braginskii, A.N. Vasilyeva, A.S. Kovalev. Helicon plasma in a nonuniform magnetic field. Fiz. Plazmy 27, 741 (2001) (in Russian).

K.P. Shamrai, S. Shinohara, V.F. Virko, V.M. Slobodyan, Yu.V. Virko, G.S. Kirichenko.Wave stimulated phenomena in inductively coupled magnetized plasmas. Plasma Phys. Control. Fusion 47, A307 (2005). https://doi.org/10.1088/0741-3335/47/5A/022

S.N. Mordik, V.I. Voznyi, V.I. Miroshnichenko, A.G. Nagornyi, D.A. Nagornyi, V.E. Storizhko, D.P. Shulga. Helicon ion source in high-density plasma mode. Vopr. At. Nauki Tekhn. No. 5, 208 (2006) (in Russian).

K.P. Shamrai, V.B. Taranov. Volume and surface rf power absorption in a helicon plasma source. Plasma Sources Sci. Technol. 5, 474 (1996). https://doi.org/10.1088/0963-0252/5/3/015

O. Grulke, A. Stark, T. Windisch, J. Zalach, T. Klinger. Plasma profiles in a cylindrical helicon discharge with converging magnetic source field. Contrib. Plasma Phys. 47, 183 (2007). https://doi.org/10.1002/ctpp.200710026

X.M. Guo, J. Sharer, Y. Mouzouris, L. Louis. Helicon experiments and simulations in nonuniform magnetic field configurations. Phys. Plasmas 6, 3400 (1999). https://doi.org/10.1063/1.873580

V.M. Slobodyan, V.F. Virko, G.S. Kirichenko, K.P. Shamray. Helicon discharge excited by a planar antenna along the magnetic field. Vopr. At. Nauki Tekhn. No. 4, 235 (2003) (in Russian).

S. Shinohara, T. Motomura, K. Tanaka, T. Tanikawa, K.P. Shamrai. Large-area high-density helicon plasma sources. Plasma Sources Sci. Technol. 19, 034018 (2010). https://doi.org/10.1088/0963-0252/19/3/034018

I. Sudit, F.F. Chen. RF compensated probes for high-density discharges. Plasma Sources Sci. Technol. 3, 162 (1994). https://doi.org/10.1088/0963-0252/3/2/006

Published
2019-04-01
How to Cite
Virko, V., & Virko, Y. (2019). Influence of Nonuniform Magnetic Field on the Helicon Discharge Excited by Various Antennas. Ukrainian Journal of Physics, 64(3), 223. https://doi.org/10.15407/ujpe64.3.223
Section
Plasma physics