Analog of the Coherent Population Trapping State in a Polychromatic Field

Authors

  • V.I. Romanenko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A.V. Romanenko Taras Shevchenko National University of Kyiv
  • L.P. Yatsenko Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.10.975

Keywords:

-

Abstract

The interaction between a three-level atom and a polychromatic field with an equidistant spectrum (Λ-scheme of the atom--field
interaction) has been studied theoretically. It is shown that the interaction of an atom with such a field can be reduced to its
interaction with a bichromatic field with additional light shifts of transition frequencies and an additional coupling of the lower
atomic levels, which is proportional to the field intensity. Owing to this coupling, the idea of the coherent population trapping can be
considered only as an approximation, because the dark state is not an eigenstate of the effective Hamiltonian in the general case of
arbitrary dipole moments. The analyzed model gives a simple theoretical interpretation for the formation of the atomic state, which
is close to the coherent population trapping, in the radiation field of a femtosecond laser.

References

E. Arimondo and G. Orriols, Nuovo Cim. Lett. 17, 333 (1976).

https://doi.org/10.1007/BF02746514

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cim. B Ser. 2 36, 5 (1976).

https://doi.org/10.1007/BF02749417

H.R. Gray, R.W. Whitley, and C.R. Stroud, jr., Opt. Lett. 3, 218 (1978).

https://doi.org/10.1364/OL.3.000218

G. Orriols, Nuovo Cim. B Ser. 2 53, 1 (1979).

https://doi.org/10.1007/BF02739299

G. Alzetta, L. Moi, and G. Orriols, Nuovo Cim. B Ser. 2 52, 209 (1979).

https://doi.org/10.1007/BF02739035

O.A. Kocharovskaya and Ya.I. Khanin, Sov. Phys. JETP 63, 945 (1986).

M.B. Gornyĭ, B.G. Matisov, and Yu.V. Rozhdestvenskiĭ, Sov. Phys. JETP 68, 728 (1989).

K.-J. Boller, A. Imamoglu, and S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991).

https://doi.org/10.1103/PhysRevLett.66.2593

S.E. Harris, Phys. Today 50, 36 (1997).

https://doi.org/10.1063/1.881806

J. Oreg, F.T. Hioe, and J.H. Eberly, Phys. Rev. A 29, 690 (1984).

https://doi.org/10.1103/PhysRevA.29.690

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kulz, and K. Bergmann, Chem. Phys. Lett. 149, 463 (1988).

https://doi.org/10.1016/0009-2614(88)80364-6

K. Bergmann, H. Theur, and B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998).

https://doi.org/10.1103/RevModPhys.70.1003

N.V. Vitanov, T. Halfmann, B.W. Shore, and K. Bergmann, Ann. Rev. Phys. Chem. 52, 763 (2001).

https://doi.org/10.1146/annurev.physchem.52.1.763

S. Knappe, R. Wynands, J. Kitching, H.G. Robinson, and L. Hollberg, J. Opt. Soc. Am. B 18, 1545 (2001).

https://doi.org/10.1364/JOSAB.18.001545

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Phys. Rev. Lett. 61, 826 (1988).

https://doi.org/10.1103/PhysRevLett.61.826

G. Alzetta, S. Gozzini, A. Lucchesini, S. Cartaleva, T. Karaulanov, C. Marinelli, and L. Moi, Phys. Rev. A 69, 063815 (2004).

https://doi.org/10.1103/PhysRevA.69.063815

V.A. Sautenkov, Yu.V. Rostovtsev, C.Y. Ye, G.R. Welch, O. Kocharovskaya, and M.O. Scully, Phys. Rev. A 71, 063804 (2005).

https://doi.org/10.1103/PhysRevA.71.063804

L. Arissian and J.-C. Diels, Opt. Commun. 264, 169 (2006).

https://doi.org/10.1016/j.optcom.2006.02.034

Yu.V. Vladimirova, B.A. Grishanin, V.N. Zadkov, V. Biancalana, G. Bevilacqua, Y. Dancheva, and L. Moi, Zh. Éksp. Teor. Fiz. 103, 528 (2006).

https://doi.org/10.1134/S1063776106100037

M. Auzinsh, R.A. Malitskiy, I.V. Matsnev, A.M. Negriyko, V.I. Romanenko, V.M. Khodakovskyy, and L.P. Yatsenko, Ukr. Fiz. Zh. 54, 975 (2009).

L.P. Yatsenko, B.W. Shore, and K. Bergmann, Opt. Commun. 236, 183 (2004).

https://doi.org/10.1016/j.optcom.2004.03.049

V.I. Romanenko, A.V. Romanenko, L.P. Yatsenko, G.A. Kazakov, A.N. Litvinov, B.G. Matisov, and Yu.V. Rozhdestvensky, J. Phys. B 43, 215402 (2010).

https://doi.org/10.1088/0953-4075/43/21/215402

L.D. Landau and E.M. Lifshitz, Mechanics (Pergamon Press, Oxford, 1976).

M. Cashen, O. Rivoire, V. Romanenko, L. Yatsenko, and H. Metcalf, Phys. Rev. A 64, 063411 (2001).

https://doi.org/10.1103/PhysRevA.64.063411

V.I. Romanenko, A.V. Romanenko, and L.P. Yatsenko, J. Phys. B 44, 215402 (2011).

https://doi.org/10.1088/0953-4075/44/11/115305

B.W. Shore, The Theory of Coherent Atomic Excitation (Wiley, New York, 1990).

E. Peik and Chr. Tamm, Europhys. Lett. 61, 181 (2003).

https://doi.org/10.1209/epl/i2003-00210-x

B.R. Beck, J.A. Becker, P. Beiersdorfer, G.V. Brown, K.J. Moody, J.B, Wilhelmy, F.S. Porter, C.A. Kilbourne, and R.L. Kelly, Phys. Rev. Lett. 98, 142501 (2007).

https://doi.org/10.1103/PhysRevLett.98.142501

E.V. Tkalya, A.N. Zherykhin, and V.I. Zhudov, Phys. Rev. C 61, 064380 (2000).

Published

2022-02-06

How to Cite

Romanenko В., Romanenko О., & Yatsenko Л. (2022). Analog of the Coherent Population Trapping State in a Polychromatic Field. Ukrainian Journal of Physics, 56(10), 975. https://doi.org/10.15407/ujpe56.10.975

Issue

Section

Atoms and molecules