The Generalized Drude–Lorentz Model and Its Applications in Metal Plasmonics


  • N.M. Chepilko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Aerospace Technologies
  • S.A. Ponomarenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Aerospace Technologies



bulk plasmons, surface plasmons, spatial dispersion, magnetostatic field


The Drude–Lorentz model has been generalized to the case of plasmons under nonmagnetic conductors located in the static magnetic, H0, and electric, E0, fields by taking the spatial dispersion effects into account. It is shown that the magnetostatic field H0 and the spatial dispersion induce the appearance of two additional types of low-frequency bulk plasmons, and the dispersion of bulk plasmons of all types substantially depends on the relative orientation of the direction ek of their propagation and the magnetostatic field vector H0. In the case of surface plasmons, the spatial dispersion leads to a two-component structure (in the metal) of their electric field E, and the external electrostatic field E0 induces the spatial dispersion depending on the Hall constant Rp. At the same time, the orientation of the magnetostatic field H0 has a significant effect on the total dispersion of surface plasmons.


S.A. Maier. Plasmonics: Fundamentals and Applications (Springer Science + Bussiness Media LLC, 2007) [ISBN: 0-387-33150-6].

S. Enoch, N. Bonod. Plasmonics: From Basics to Advanced Topics (Springer, 2012) [ISBN-10: 3642280781].

R.S. Anwar, H. Ning, L. Mao. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digit. Commun. Netw. 4, 244 (2018).

M.M. Fogler, A.Yu. Dobin, V.I. Perel, B.I. Shklovskii. Suppression of chaotic dynamics and localization of twodimensional electrons by a weak magnetic field. Phys. Rev. B 56, 6823 (1997).

N.V. Smith. Memory effects in the magnetotransport properties of the classical Drude metal. Phys. Rev. B 68, 132406 (2003).

E.M. Chudnovsky. Theory of spin Hall effect: Extension of the Drude model. Phys. Rev. Lett. 99, 206601 (2007).

W.J.M. Kort-Kamp, F.S.S. Rosa, F.A. Pinheiro, C. Farina. Tuning plasmonic cloaks with an external magnetic field. Phys. Rev. Lett. 111, 215504 (2013).

J. Chochol, K. Postava, M. Cada, M. Vanwolleghem, L. Halagacka, J.-F. Lampin, J. Pistora. Magneto-optical properties of InSb for terahertz applications. AIP Advances 6, 115021 (2016).

N. Maccaferri1, I. Zubritskaya, I. Razdolski, I.-A. Chioar, V. Belotelov, V. Kapaklis, P.M. Oppeneer. A. Dmitriev. Nanoscale magnetophotonics. J. Appl. Phys. 127, 080903 (2020).

V.Yu. Malyshev, I.V. Zavislyak, G.A. Melkov, M.O. Popov, O.V. Prokopenko. Microwave magnon-plasmon-polaritons in the ferromagnetic metal-screened insulator structure. Ukr. J. Phys. 65, 939 (2020).

Xueqian Zhang, Quan Xu, Lingbo Xia, Yanfeng Li, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Jiaguang Han, Weili Zhang. Terahertz surface plasmonic waves: Terahertz surface plasmonic waves: a review. Adv. Photonics 2, N 1, 014001 (2020).

D.V. Fateev, V.V. Popov. Hydrodynamic terahertz plasmon and electron sound in graphene with spatial dispersion. Fiz. Tekhn. Poluprovodn. 54, 785 (2020) (in Russian).

New Semiconductor Materials. Characteristics and Properties [].

N.B. Brandt, V.A. Kulbachinskii. Quasiparticles in Condensed Matter Physics (Fizmatlit, 2005) (in Russian) [ISBN: 5-9221-0564-7].

A.I. Anselm. Introduction to Semiconductor Theory (Prentice-Hall, 1981).

B.M. Askerov. Electron Transport Phenomena in Semiconductors (World Scientific, 1994).

L.D. Landau, E.M. Lifshits, Electrodynamics of Continuous Media (Pergamon Press, 1984).

D.V. Sivukhin. General Course of Physics. Optics (Fizmatlit, 2006) (in Russian).



How to Cite

Chepilko, N., & Ponomarenko, S. (2022). The Generalized Drude–Lorentz Model and Its Applications in Metal Plasmonics. Ukrainian Journal of Physics, 67(6), 431.



General physics