Instability and Disturbance of Ferromagnetic Pendulum Oscillations at Magnetic-Orientation Phase Transition Induced by Magnetic Field

Authors

  • V.M. Kalita Institute of Physics, Nat. Acad. of Sci. of Ukraine, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine https://orcid.org/0000-0001-6329-9095
  • S.O. Reshetniak National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine https://orcid.org/0000-0003-2316-5396
  • S.M. Ryabchenko Institute of Physics, Nat. Acad. of Sci. of Ukraine https://orcid.org/0000-0002-5638-7166

DOI:

https://doi.org/10.15407/ujpe69.9.684

Keywords:

magnetic pendulum, eigenfrequency, orientational magnetic phase transition, parametric resonance, forced oscillations

Abstract

Nonlinear effects of magnetization and magnetic phase transition on the stability and dynamics of a pendulum made of soft-magnetic ferromagnet have been considered. The pendulum is a beam, with its longitudinal dimension being much larger than the transverse dimensions. It has been shown that the magnetization of the pendulum affects its stability and can lead to a critical change in the pendulum equilibrium state in a magnetic field directed perpendicularly (transversely) to the pendulum. The oscillating system loses its rigidity in the critical field, and the eigenfrequency of mechanical pendulum oscillations tends to zero. The critical character of the influence of the magnetic field on the pendulum occurs due to the magnetic-field-induced orientational magnetic phase transition in the ferromagnetic material of the pendulum, which is accompanied by a change in its magnetic state symmetry. An alternating magnetic field together with a stationary magnetic field induces forced mechanical oscillations of the pendulum if the stationary field strength is larger than a threshold value. If the stationary field is less than the critical one, the alternating magnetic field can cause the parametric resonance of the mechanical oscillations of the pendulum.

References

T. Boeck, S.L. Sanjari, T. Becker. Parametric instability of a magnetic pendulum in the presence of a vibrating conducting plate. Nonlinear Dyn. 102, 2039 (2020).

https://doi.org/10.1007/s11071-020-06054-y

K. Polczynski, S. Skurativskyi, M. Bednarek, J. Awrejcewicz. Nonlinear oscillations of coupled pendulums subjected to an external magnetic stimulus. Mech. Syst. Signal. Pr. 154, 107560 (2021).

https://doi.org/10.1016/j.ymssp.2020.107560

V. Tran, E. Brost, M. Johnston, J. Jalkio. Predicting the behavior of a chaotic pendulum with a variable interaction potential. Chaos 23, 033103 (2013).

https://doi.org/10.1063/1.4812721

M. Wojna, A. Wijata, G. Wasilewski, J. Awrejcewicz. Numerical and experimental study of a double physical pendulum with magnetic interaction. J. Sound Vib. 430, 214 (2018).

https://doi.org/10.1016/j.jsv.2018.05.032

B. Nana, K. Polczynski, P. Woafo, J. Awrejcewicz, G. Wasilewski. Analysis of the nonlinear dynamics of a single pendulum driven by a magnetic field using the magnetic charges interaction model and the experimentally fitted interaction model. Mech. Syst. Signal. Pr. 209, 111114 (2024).

https://doi.org/10.1016/j.ymssp.2024.111114

A. Siahmakoun, V.A. French, J. Patterson. Nonlinear dynamics of a sinusoidally driven pendulum in a repulsive magnetic field, Am. J. Phys. 65, 393 (1997).

https://doi.org/10.1119/1.18546

A. Wijata, K. Polczynski, J. Awrejcewicz. Theoretical and numerical analysis of regular one-side oscillations in a single pendulum system driven by a magnetic field. Mech. Syst. Signal. Pr. 150, 107229 (2021).

https://doi.org/10.1016/j.ymssp.2020.107229

Y. Uzun, E. Kurt, H.H. Kurt. Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum. Sensor. Actuat. A 224, 119 (2015).

https://doi.org/10.1016/j.sna.2015.01.033

M.I. Gonzalez, A. Bol. Controlled damping of a physical pendulum: experiments near critical conditions. Eur. J. Phys. 27, 257 (2006).

https://doi.org/10.1088/0143-0807/27/2/008

H. Horner, C.M. Varma. Nature of spin-reorientation transitions. Phys. Rev. Lett. 20, 845 (1968).

https://doi.org/10.1103/PhysRevLett.20.845

L.D. Landau, E.M. Lifshitz. Electrodynamics of Continuous Media (Pergamon Press, 1984).

https://doi.org/10.1016/B978-0-08-030275-1.50007-2

E.C. Stoner, E.P. Wohlfarth. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. 240, 599 (1948).

https://doi.org/10.1098/rsta.1948.0007

H. Thomas. Phase transitions in a uniaxial ferromagnet. Phys. Rev. 187, 630 (1969).

https://doi.org/10.1103/PhysRev.187.630

V.M. Kalita, I.M. Ivanova, V.M. Loktev. Quantum effects of magnetization of an easy-axis ferromagnet with S = 1. Theor. Math. Phys. 173, 1620 (2012).

https://doi.org/10.1007/s11232-012-0136-0

C. Kittel. Ferromagnetic resonance. J. Phys. Radium 12, 291 (1951).

https://doi.org/10.1051/jphysrad:01951001203029100

J.-M. Beaujour, D. Ravelosona, I. Tudosa, E. Fullerton, A.D. Kent. Ferromagnetic resonance linewidth in ultrathin films with perpendicular magnetic anisotropy. Phys. Rev. B 80, 180415 (2009).

https://doi.org/10.1103/PhysRevB.80.180415

E. Mancini, F. Pressacco, M. Haertinger, E.E. Fullerton, T. Suzuki, G. Woltersdorf, C.H. Back. Magnetic phase transition in iron-rhodium thin films probed by ferromagnetic resonance. J. Phys. D 46, 245302 (2013).

https://doi.org/10.1088/0022-3727/46/24/245302

C. Bihler, H. Huebl, M.S. Brandt, S.T. Goennenwein, M. Reinwald, U. Wurstbauer, M. Doppe, D. Weiss, W. Wegscheider. Magnetic anisotropy of Ga1−xMnxAs thin films on GaAs (311)A probed by ferromagnetic resonance. Appl. Phys. Lett. 89, 012507 (2006).

https://doi.org/10.1063/1.2219408

F.C. Moon, Y.-H. Pao. Magnetorheological effect in elastomers containing uniaxial ferromagnetic particles. J. Appl. Mech. 35, 53 (1968).

K. Yu, N. X. Fang, G. Huang, Q. Wang. Magnetoactive acoustic metamaterials. Adv. Mater. 30, 1706348 (2018).

https://doi.org/10.1002/adma.201706348

M. Schrodner, G. Pflug. Magnetomechanical properties of composites and fibers made from thermoplastic elastomers (TPE) and carbonyl iron powder (CIP). J. Magn. Magn. Mater. 454, 258 (2018).

https://doi.org/10.1016/j.jmmm.2018.01.053

Y. Liu, S. Chen, X. Tan, C. Cao. A finite element framework for magneto-actuated large deformation and instability of slender magneto-active elastomers. Int. J. Appl. Mech. 12, 2050013 (2020).

https://doi.org/10.1142/S1758825120500131

Y.L. Raikher, O.V. Stolbov, G.V. Stepanov. Shape instability of a magnetic elastomer membrane. J. Phys. D 41, 152002 (2008).

https://doi.org/10.1088/0022-3727/41/15/152002

F. Gerbal, Y. Wang, F. Lyonnet, J.-C. Bacri. A refined theory of magnetoelastic buckling matches experiments with ferromagnetic and superparamagnetic rods. Proc. Natl. Acad. Sci. USA 112, 7135 (2015).

https://doi.org/10.1073/pnas.1422534112

V.M. Kalita, Y.I. Dzhezherya, S.V. Cherepov, Y.B. Skirta, A.V. Bodnaruk, G.G. Levchenko. Smart Mater. Struct. 30, 025020 (2021).

https://doi.org/10.1088/1361-665X/abd58c

V.M. Kalita, Yu.I. Dzhezherya, S.V. Cherepov, Yu.B. Skirta, A.V. Bodnaruk, S.M. Ryabchenko. Spontaneous change of symmetry in a magnetoactive elastomer beam at its critical bending induced by a magnetic field, Smart Mater. Struct. 32, 045002 (2023).

https://doi.org/10.1088/1361-665X/acbd04

V.M. Kalita, Y.I. Dzhezherya, G.G. Levchenko. The loss of mechanical stability and the critical magnetization of a ferromagnetic particle in an elastomer. Soft Matter 15, 5987 (2019).

https://doi.org/10.1039/C9SM00735K

V.M. Kalita, I.M. Ivanova, V.M. Loktev. Magnetorheological effect in elastomers containing uniaxial ferromagnetic particles. Cond. Matter Phys. 23, 23608 (2020).

https://doi.org/10.5488/CMP.23.23608

A.H. Nayfeh, D.T. Mook. Nonlinear Oscillations (John Wiley and Sons, 1979).

Published

2024-10-16

How to Cite

Kalita, V., Reshetniak, S., & Ryabchenko, S. (2024). Instability and Disturbance of Ferromagnetic Pendulum Oscillations at Magnetic-Orientation Phase Transition Induced by Magnetic Field. Ukrainian Journal of Physics, 69(9), 684. https://doi.org/10.15407/ujpe69.9.684

Issue

Section

Physics of magnetic phenomena and physics of ferroics

Most read articles by the same author(s)