Interplay of Linear and Nonlinear Localization Mechanisms in Spin-Torque Oscillators with a Field Well
DOI:
https://doi.org/10.15407/ujpe64.10.947Keywords:
spin-torque oscillator, spin-wave bullet, localized mode, magnetization dynamicsAbstract
The magnetization dynamics in a spin-torque oscillator with nonuniform profile of a static magnetic field creating a field well is studied by analytic calculations and numerical simulations. It is demonstrated that, in the case of sufficiently deep and narrow field well, the linear localization in the field well dominates the nonlinear self-localization, despite a negative nonlinear frequency shift. A change of the localization mechanism results in a qualitatively different dependence of the generation power on the driving current. For the dominant linear localization, the soft generation mode is realized, while, for the nonlinear self-localization, we observe a hard mode of auto-oscillator excitation. Simultaneously, a difference in the profiles of the excited spin-wave mode can become evident and distinguishable in experiments only in the case of a nonsymmetric field well.
References
J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars, Phys. Rev. Lett. 84, 3149 (2000). https://doi.org/10.1103/PhysRevLett.84.3149
R. Ramaswamy, J.M. Lee, K. Cai, H. Yang. Recent advances in spin-orbit torques: Moving towards device applications. Appl. Phys. Rev. 5, 031107 (2018). https://doi.org/10.1063/1.5041793
K. Ando, S. Takahashi, K. Harii, K. Sasage, J. Ieda, S. Maekawa, E. Saitoh. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008). https://doi.org/10.1103/PhysRevLett.101.036601
A. Hamadeh, O. d'Allivy Kelly, C. Hahn, H. Meley, R. Bernard, A.H. Molpeceres, V.V. Naletov, M. Viret, A. Anane, V. Cros, S.O. Demokritov, J.L. Prieto, M. Mu?noz, G. de Loubens, O. Klein. Full control of the spin-wave damping in a magnetic insulator using spin-orbit torque. Phys. Rev. Lett. 113, 197203 (2014). https://doi.org/10.1103/PhysRevLett.113.197203
S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380 (2003). https://doi.org/10.1038/nature01967
W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, T.J. Silva. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004). https://doi.org/10.1103/PhysRevLett.92.027201
O. Prokopenko, E. Bankowski, T. Meitzler, V. Tiberkevich, A. Slavin. Spin-torque nano-oscillator as a microwave signal source. IEEE Magn. Lett. 2, 3000104 (2011). https://doi.org/10.1109/LMAG.2010.2102007
S. Tsunegi, H. Kubota, K. Yakushiji, M. Konoto, S. Tamaru, A. Fukushima, H. Arai, H. Imamura, E. Grimaldi, R. Lebrun, J. Grollier, V. Cros, S. Yuasa. High emission power and Q factor in spin torque vortex oscillator consisting of FeB free layer. Appl. Phys. Express 7, 063009 (2014). https://doi.org/10.7567/APEX.7.063009
V.E. Demidov, S. Urazhdin, R. Liu, B. Divinskiy, A. Telegin, S.O. Demokritov. Excitation of coherent propagating spin waves by pure spin currents. Nature Commun 7, 10446 (2016). https://doi.org/10.1038/ncomms10446
A. Giordano, R. Verba, R. Zivieri, A. Laudani, V. Puliafito, G. Gubbiotti, R. Tomasello, G. Siracusano, B. Azzerboni, M. Carpentieri, A. Slavin, G. Finocchio. Spin-Hall nano-oscillator with oblique magnetization and Dzyaloshinskii-Moriya interaction as generator of skyrmions and nonreciprocal spin-waves. Sci. Rep. 6, 36020 (2016). https://doi.org/10.1038/srep36020
J. Torrejon, M. Riou, F.A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioz, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M.D. Stiles, J. Grollier. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428 (2017). https://doi.org/10.1038/nature23011
V.E. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz, S.O. Demokritov. Magnetic nano-oscillator driven by pure spin current,. Nat. Mater. 11, 1028 (2012). https://doi.org/10.1038/nmat3459
V.E. Demidov, S. Urazhdin, A. Zholud, A.V. Sadovnikov, A.N. Slavin, S.O. Demokritov. Spin-current nano-oscillator based on nonlocal spin injection. Sci. Rep. 5, 8578 (2015). https://doi.org/10.1038/srep08578
A. Slavin, V. Tiberkevich. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875 (2009). https://doi.org/10.1109/TMAG.2008.2009935
V.S. Pribiag, I.N. Krivorotov, G.D. Fuchs, P.M. Braganca, O. Ozatay, J.C. Sankey, D.C. Ralph, R.A. Buhrman. Magnetic vortex oscillator driven by d.c. spin-polarized current. Nature Phys. 3, 498 (2007). https://doi.org/10.1038/nphys619
V.E. Demidov, S. Urazhdin, E.R.J. Edwards, M.D. Stiles, R.D. McMichael, S.O. Demokritov. Control of magnetic fluctuations by spin current. Phys. Rev. Lett. 107, 107204 (2011). https://doi.org/10.1103/PhysRevLett.107.107204
J. Slonczewski. Excitation of spin waves by an electric current. J. Magn. Magn. Mater. 195, L261 (1999). https://doi.org/10.1016/S0304-8853(99)00043-8
M.A. Hoefer, M.J. Ablowitz, B. Ilan, M.R. Pufall, T.J. Silva. Theory of magnetodynamics induced by spin torque in perpendicularly magnetized thin films. Phys. Rev. Lett. 95, 267206 (2005). https://doi.org/10.1103/PhysRevLett.95.267206
G. Consolo, L. Lopez-Diaz, B. Azzerboni, I. Krivorotov, V. Tiberkevich, A. Slavin. Excitation of spin waves by a current-driven magnetic nanocontact in a perpendicularly magnetized waveguide. Phys. Rev. B 88, 014417 (2013). https://doi.org/10.1103/PhysRevB.88.014417
A. Slavin, V. Tiberkevich. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005). https://doi.org/10.1103/PhysRevLett.95.237201
G. Consolo, B. Azzerboni, G. Gerhart, G.A. Melkov, V. Tiberkevich, A.N. Slavin. Excitation of self-localized spin-wave bullets by spin-polarized current in in-plane magnetized magnetic nanocontacts: A micromagnetic study. Phys. Rev. B 76, 144410 (2007). https://doi.org/10.1103/PhysRevB.76.144410
S. Bonetti, V. Tiberkevich, G. Consolo, G. Finocchio, P. Muduli, F. Mancoff, A. Slavin, J. ? Akerman. Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105, 217204 (2010). https://doi.org/10.1103/PhysRevLett.105.217204
L. Yang, R. Verba, V. Tiberkevich, T. Schneider, A. Smith, Z. Duan, B. Youngblood, K. Lenz, J. Lindner, A.N. Slavin, I.N. Krivorotov. Reduction of phase noise in nanowire spin orbit torque oscillators. Sci. Rep. 5, 16942 (2015). https://doi.org/10.1038/srep16942
K. Wagner, A. Smith, T. Hache, J.-R. Chen, L. Yang, E. Montoya, K. Schultheiss, J. Lindner, J. Fassbender, I. Krivorotov, H. Schultheiss. Injection locking of multiple auto-oscillation modes in a tapered nanowire spin Hall oscillator. Sci. Rep. 8, 16040 (2018). https://doi.org/10.1038/s41598-018-34271-4
Z. Duan, A. Smith, L. Yang, B. Youngblood, J. Lindner, V.E. Demidov, S.O. Demokritov, I.N. Krivorotov. Nanowire spin torque oscillator driven by spin-orbit torques. Nature Commun. 5, 5616 (2014). https://doi.org/10.1038/ncomms6616
M. Dvornik, A.A. Awad, J. ? Akerman. Origin of magnetization auto-oscillations in constriction-based spin Hall nano-oscillators. Phys. Rev. Applied 9, 014017 (2018). https://doi.org/10.1103/PhysRevApplied.9.014017
H. Mazraati, S.R. Etesami, S.A.H. Banuazizi, S. Chung, A. Houshang, A.A. Awad, M. Dvornik, J. ? Akerman. Auto-oscillating spin-wave modes of constriction-based spin Hall nano-oscillators in weak in-plane fields. Phys. Rev. Applied 10, 054017 (2018). https://doi.org/10.1103/PhysRevApplied.10.054017
M. Dvornik, J. ? Akerman. Anomalous nonlinearity of the magnonic edge mode. arXiv:1804.01585 [cond-mat.mes-hall].
B. Divinskiy, V.E. Demidov, S. Urazhdin, R. Freeman, A.B. Rinkevich, S.O. Demokritov. Controllable excitation of quasi-linear and bullet modes in a spin-Hall nano-oscillator. Appl. Phys. Lett. 114, 042403 (2019). https://doi.org/10.1063/1.5064841
A. Houshang, R. Khymyn, H. Fulara, A. Gangwar, M. Haidar, S.R. Etesami, R. Ferreira, P.P. Freitas, M. Dvornik, R.K. Dumas, J. ? Akerman. Spin transfer torque driven higher-order propagating spin waves in nanocontact magnetic tunnel junctions. Nature Commun. 9, 4374 (2018). https://doi.org/10.1038/s41467-018-06589-0
H. Ulrichs, V.E. Demidov, S.O. Demokritov. Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators. Appl. Phys. Lett. 104, 042407 (2014). https://doi.org/10.1063/1.4863660
G. Consolo, G. Finocchio, G. Siracusano, S. Bonetti, A. Eklund, J. ? Akerman, B. Azzerboni. Non-stationary excitation of two localized spin-wave modes in a nanocontact spin torque oscillator. J. Appl. Phys. 114, 153906 (2013). https://doi.org/10.1063/1.4825065
S. Bonetti, R. Kukreja, Z. Chen, F. Maci'a, J.M. Hern'andez, A. Eklund, D. Backes, J. Frisch, J. Katine, G. Malm, S. Urazhdin, A. D. Kent, J. St?ohr, H. Ohldag, H.A. D?urr. Direct observation and imaging of a spin-wave soliton with p-like symmetry. Nature Commun. 6, 8889 (2015). https://doi.org/10.1038/ncomms9889
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.