Complexation of Ibuprofen with Bovine Serum Albumin: Spectroscopic Study and Molecular Simulation

Authors

  • A.I. Lesiuk Taras Shevchenko National University of Kyiv
  • I.Yu. Doroshenko Taras Shevchenko National University of Kyiv
  • O.P. Dmytrenko Taras Shevchenko National University of Kyiv
  • M.P. Kulish Taras Shevchenko National University of Kyiv
  • L.L. Davtyan P.L. Shupyk National Healthcare University of Ukraine
  • A.O. Drozdova P.L. Shupyk National Healthcare University of Ukraine
  • M.I. Kanyuk O.V. Palladin Institute of Biochemistry, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe70.11.776

Keywords:

bovine serum albumin, ibuprofen, fluorescence quenching, molecular docking

Abstract

The interaction of ibuprofen with bovine serum albumin (BSA) in the aqueous environment has been studied using both experimental and computer simulation methods. The fluorescence quenching spectra are obtained at a constant BSA concentration of 2μM, varying ibuprofen concentrations of 0–1.5 μM, and three fixed temperatures of 293, 303, and 313 K. The intensity dependences follow the Stern–Volmer equation and testify to the static quenching mechanism. Together with the temperature-induced growth of the binding constant, this result points to the predominantly hydrophobic nature of the interaction. The obtained binding constants equal lg KS = 4.3÷5.0 at the binding stoichiometry close to 1 : 1. The thermodynamic analysis of the complexation showed that ΔG < 0, ΔH > 0, and ΔS > 0, G, H, S which confirms the spontaneous and entropy-driven character of the binding process. Molecular docking simulation using AutoDock 4.2.6 made it possible to identify three main binding sites of ibuprofen with BSA. The most energetically favorable binding modes include van der Waals, hydrogen bonding, hydrophobic, and electrostatic interactions; nevertheless, contacts with hydrophobic residues of BSA prevail. The calculated spatial arrangement of ibuprofen with respect to tryptophan residues corresponds to the experimentally observed fluorescence quenching.

References

1. F. Simonelli, G. Rossi, L. Monticelli. Role of ligand conformation on nanoparticle-protein interactions. J. Phys. Chem. B 123, 1764 (2019).

https://doi.org/10.1021/acs.jpcb.8b11204

2. A.L. Mart'ınez-L'opez, C. Pangua, C. Reboredo, R. Campi'on, J. Morales-Gracia, J.M. Irache. Protein-based nanoparticles for drug delivery purposes. Int. J. Pharm. 581, 119289 (2020).

https://doi.org/10.1016/j.ijpharm.2020.119289

3. T. Pho, J.A. Champion. Surface engineering of protein nanoparticles modulates transport, adsorption, and uptake in mucus. ACS Appl. Mater. Interfaces 14, 51697 (2022).

https://doi.org/10.1021/acsami.2c14670

4. A. Bujacz. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. D Biol. Crystallogr. 68, 1278 (2012).

https://doi.org/10.1107/S0907444912027047

5. A. Michnik, K. Michalik, A. Kluczewska, Z. Drzazga. Comparative DSC study of human and bovine serum albumin. J. Therm. Anal. Calorim. 84, 113 (2006).

https://doi.org/10.1007/s10973-005-7170-1

6. X. Xu, J. Hu, H. Xue, Y. Hu, Y. Liu, G. Lin, L. Liu, R. Xu. Applications of human and bovine serum albumins in biomedical engineering: A review. Int. J. Biol. Macromol. 253, 126914 (2023).

https://doi.org/10.1016/j.ijbiomac.2023.126914

7. E. Karami, M. Behdani, F. Kazemi-Lomedasht. Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs. J. Drug Deliv. Sci. Technol. 55, 101471 (2020).

https://doi.org/10.1016/j.jddst.2019.101471

8. O. Holovko, O. Dmytrenko, M. Kulish, A. Lesiuk, O. Pavlenko, A. Naumenko, M. Kaniuk, I. Doroshenko. Mechanisms of heteroassociation in aqueous solutions of BSA with curcumin. J. Mol. Liq. 415, 126364 (2024).

https://doi.org/10.1016/j.molliq.2024.126364

9. O.O. Holovko, O.P. Dmytrenko, A.I. Lesiuk, M.P. Kulish et al. Mechanisms of the interaction of bovine serum albumin with quercetin. Mol. Cryst. Liq. Cryst. 768, 29 (2024).

https://doi.org/10.1080/15421406.2023.2238505

10. O. Dmytrenko, M. Kulish, O. Pavlenko, A. Lesiuk, A. Momot, T. Busko, M. Kaniuk, T. Nikolaienko, L. Bulavin. Mechanisms of heteroassociation of ceftriaxone and doxorubicin drugs with bovine serum albumin. In: Soft Matter Systems for Biomedical Applications (Springer, 2022).

https://doi.org/10.1007/978-3-030-80924-9_8

11. N.A. Goncharenko, O.P. Dmytrenko, O.L. Pavlenko, M.P. Kulish, I.P. Pundyk, A.I. Lesyuk, T.O. Busko et al. Complexation peculiarities in "Doxorubicin-Bovine Serum Albumin-Gold Nanoparticles" heterosystem. Ukr. Fiz. Zh. 65, 464 (2020).

https://doi.org/10.15407/ujpe65.6.468

12. R. Jin, D. Song, H. Xiong, L. Ai, P. Ma, Y. Sun. Magnetic core/shell Fe3O4/Au nanoparticles for studies of quinolones binding to protein by fluorescence spectroscopy. Luminescence 31, 499 (2016).

https://doi.org/10.1002/bio.2988

13. S. Kaumbekova, N. Sakaguchi, D. Shah, M. Umezawa. Effect of gold nanoparticles on the conformation of bovine serum albumin: insights from CD spectroscopic analysis and molecular dynamics simulations. ACS Omega 9, 49283 (2024).

https://doi.org/10.1021/acsomega.4c06409

14. A. Spada, J. Emami, J.A. Tuszynski, A. Lavasanifar. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm. 18, 1862 (2021).

https://doi.org/10.1021/acs.molpharmaceut.1c00046

15. N. Qu, K. Song, Y. Ji, M. Liu, L. Chen, R.J. Lee, L. Teng. Albumin nanoparticle-based drug delivery systems. Int. J. Nanomed. 2024, 6945 (2024).

https://doi.org/10.2147/IJN.S467876

16. M. Bukackova, R.J.B.C. Marsalek. Interaction of BSA with ZnO, TiO2, and CeO2 nanoparticles. Biophys. Chem. 267, 106475 (2020).

https://doi.org/10.1016/j.bpc.2020.106475

17. R. Thiramanas, Y. Wongngam, G. Supanakorn, D. Polpanich. BSA adsorption on titanium dioxide nanoparticle surfaces for controlling their cellular uptake in skin cells. ACS Appl. Bio Mater. 7, 1713 (2024).

https://doi.org/10.1021/acsabm.3c01138

18. M. Lokolkar, A. Udnoor, M.S. Ali, U. Katrahalli, M.N. Kalasad, H.A. Al-Lohedan, M.D. Hadagali. Investigations on the complexation and binding mechanism of bovine serum albumin with Ag-doped TiO2 nanoparticles. Phys. Chem. Chem. Phys. 26, 26453 (2024).

https://doi.org/10.1039/D4CP02056A

19. O.O. Honcharova, O.P. Dmytrenko, A.I. Lesiuk, M.P. Kulish, O.L. Pavlenko, A.P. Naumenko, I.Yu. Doroshenko, N.M. Zholobak, M.I. Kaniuk. Binding parameters and conjugation mechanisms in the solutions of BSA with antioxidant CeO2 nanoparticles. Mol. Cryst. Liq. Cryst. 750, 144 (2023).

https://doi.org/10.1080/15421406.2022.2073044

20. P.P. Gorbyk, A.L. Petranovska, O.P. Dmytrenko, O.L. Pavlenko, I.P. Pundyk, T.O. Busko, T.M. PinchukRugal et al. Adsorption mechanisms of gemcitabine molecules on the surface of Fe3O4 nanoparticles with biocompatible coatings. In: Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications: Selected Proceedings of the 7th International Conference Nanotechnology and Nanomaterials (NANO2019), 27-30 August 2019, Lviv, Ukraine (Springer, 2020), p. 195.

https://doi.org/10.1007/978-3-030-52268-1_15

21. J. Irvine, A. Afrose, N. Islam. Formulation and delivery strategies of ibuprofen: challenges and opportunities. Drug Dev. Ind. Pharm. 44, 173 (2018).

https://doi.org/10.1080/03639045.2017.1391838

22. X. Yuan, A.C. Capomacchia. Influence of physicochemical properties on the in vitro skin permeation of the enantiomers, racemate, and eutectics of ibuprofen for enhanced transdermal drug delivery. J. Pharm. Sci. 102, 1957 (2013).

https://doi.org/10.1002/jps.23548

23. I. Doroshenko, T. Rudenok, A. Lesiuk, A. Smal, O. Dmytrenko, L. Davtian, A. Drozdova. Peculiarities of ibuprofen interaction with polyethylene glycol polymer matrix. Low Temp. Phys. 51, 215 (2025).

https://doi.org/10.1063/10.0035405

24. Y. Ni, R. Zhu, S. Kokot. Competitive binding of small molecules with biopolymers: A fluorescence spectroscopy and chemometrics study of the interaction of aspirin and ibuprofen with BSA. Analyst 136, 4794 (2011).

https://doi.org/10.1039/c1an15550d

25. A. Ploch-Jankowska, D. Pentak. A comprehensive spectroscopic analysis of the ibuprofen binding with human serum albumin, part I. Pharmaceuticals 13, 205 (2020).

https://doi.org/10.3390/ph13090205

26. S. Evoli, D.L. Mobley, R. Guzzi, B. Rizzuti. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations. Phys. Chem. Chem. Phys. 18, 32358 (2016).

https://doi.org/10.1039/C6CP05680F

27. State Pharmacopoeia of Ukraine/State Enterprise "Scientific and Expert Pharmacopoeial Center". Supplement 1 (RIREG, 2004) [ISBN: 966-95824-3-1].

28. T. Peters. All About Albumin: Biochemistry, Genetics, and Medical Applications (Academic Press, 1995) [ISBN: 0-12-552110-3].

https://doi.org/10.1016/B978-012552110-9/50006-4

29. N.M. Davies. Clinical pharmacokinetics of ibuprofen: the first 30 years. Clinic. Pharmacokinet. 34, 101 (1998).

https://doi.org/10.2165/00003088-199834020-00002

30. Principles of Fluorescence Spectroscopy. Edited by J.R. Lakowicz (Springer, 2006) [ISBN: 978-0-387-31278-1].

31. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785 (2009).

https://doi.org/10.1002/jcc.21256

32. A. Bujacz. Structures of bovine, equine and leporine serum albumin. Acta Crystallogr. D 68, 1278 (2012).

https://doi.org/10.1107/S0907444912027047

33. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 3672, Ibuprofen. https://pubchem.ncbi.nlm.nih.gov/compound/Ibuprofen.

34. O. Matsarskaia, L. B¨uhl, C. Beck, M. Grimaldo, R. Schweins, F. Zhang, T. Seydel, F. Schreiber, F. Roosen-Runge. Evolution of the structure and dynamics of bovine serum albumin induced by thermal denaturation. Phys. Chem. Chem. Phys. 22, 18507 (2020).

https://doi.org/10.1039/D0CP01857K

35. S.G. Krimmer, G. Klebe. Thermodynamics of protein-ligand interactions as a reference for computational analysis: how to assess accuracy, reliability and relevance of experimental data. J. Comput. Aided Mol. Des. 29, 867 (2015).

https://doi.org/10.1007/s10822-015-9867-y

36. T. Weitner, T. Friganovic, D. ˇSaki'c. Inner filter effect correction for fluorescence measurements in microplates using variable vertical axis focus. Anal. Chem. 94, 7107 (2022).

https://doi.org/10.1021/acs.analchem.2c01031

37. J.T. Vivian, P.R. Callis. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 80, 2093 (2001).

https://doi.org/10.1016/S0006-3495(01)76183-8

38. A.R. Alhankawi, J.K. Al-Husseini, A. Spindler, C. Baker, T.T. Shoniwa, M. Ahmed, P.A. Chiarelli, M.S. Johal. The relationship between hydrophobicity and drug-protein binding in human serum albumin: a quartz crystal microbalance study. Biophysica 2, 113 (2022).

https://doi.org/10.3390/biophysica2020012

Published

2025-11-26

How to Cite

Lesiuk, A., Doroshenko, I., Dmytrenko, O., Kulish, M., Davtyan, L., Drozdova, A., & Kanyuk, M. (2025). Complexation of Ibuprofen with Bovine Serum Albumin: Spectroscopic Study and Molecular Simulation. Ukrainian Journal of Physics, 70(11), 776. https://doi.org/10.15407/ujpe70.11.776

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.