Component Hybridization in Thin Granulated C60−Cu Nanocomposite Films

Authors

  • O.P. Dmytrenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • O.L. Pavlenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • M.P. Kulish Taras Shevchenko National University of Kyiv, Faculty of Physics
  • M.A. Zabolotnyi Taras Shevchenko National University of Kyiv, Faculty of Physics
  • M.E. Kornienko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V.A. Brusentsov Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V.M. Rybii Taras Shevchenko National University of Kyiv, Faculty of Physics
  • E.M. Shpilevskyi A.V. Lykov Institute of Heat and Mass Transfer

DOI:

https://doi.org/10.15407/ujpe56.8.828

Keywords:

-

Abstract

Thin granulated films of C60–Cu nanocomposite with the Cu contents of 80, 34, and 8 at.% were fabricated with the use of the vacuum codeposition method. The films were annealed at a temperature of 473 K for 10, 20, and 30 h in vacuum. Films with lower Cu
contents demonstrated a drastic relative intensity decrease and a broadening of the Ag(2) dipole-active vibrational band in the Raman spectrum, which is sensitive to the charge transfer from metal atoms to C60 molecules. Further annealing was accompanied not only by a decrease of this band intensity, but also by an intensity increase and a broadening of the Hg(8) vibrational mode band.
Moreover, annealing gave rise to the growth of the triplet radiation emission intensity. Similar processes, but with some delay, also
occurred in a granular film with a higher copper content. The transformation of Raman and photoluminescence spectra evidenced the polymerization and the destruction of C60 molecules owing to the diffusion of copper atoms into C60 crystallites, followed by the chemical interaction between those two components due to the charge transfer from metal atoms to fullerenes.

References

A.M. Rao, P.C. Eklund, J.-L. Hodeau et al., Phys. Rev. B 78, 4766 (1997).

V.V. Brazhkin, A.G. Lyapin, S.V. Popova et al., Phys. Rev. B 56, 11465 (1997).

https://doi.org/10.1103/PhysRevB.56.11465

V.V. Brazhkin, A.G. Lyapin, Yu.V. Antonov et al., Pis'ma Zh. Eksp. Teor. Fiz. 4, 328 (1995).

V.V. Brazhkin, A.G. Lyapin, and S.V. Popova, Zh. Eksp. Teor. Fiz. 11, 755 (1996).

V.A. Davydov, L.S. Kashevarova, A.V. Rakhmanina et al., Pis'ma Zh. Eksp. Teor. Fiz. 10, 778 (1996).

A.G. Lyapin and V.V. Brazhkin, Fiz. Tverd. Tela 3, 393 (2002).

K.P. Meletov, J. Arvanitidis, S. Assimopoulos et al., Fiz. Tverd. Tela 4, 601 (2002).

V.A. Davydov, L.S. Kashevarova, A.V. Rakhmanina et al., Phys. Rev. B 22, 14786 (1998).

https://doi.org/10.1103/PhysRevB.58.14786

J. Winter, H. Kuzmany, A. Soldatov et al., Phys. Rev. B 9, 17486 (1996).

https://doi.org/10.1103/PhysRevB.54.17486

P. Zhou, K.-A. Wang, Y. Wang et al., Phys. Rev. B 4, 2595 (1992).

https://doi.org/10.1103/PhysRevB.46.2595

G. Dresselhaus, M.S. Dresselhaus, and P.C. Eklund, Phys. Rev. B 12, 6923 (1992).

https://doi.org/10.1103/PhysRevB.45.6923

B. Ha, J.H. Rhee, Y. Li et al., Surf. Sci. 3, 186 (2002).

A.A. Sabouri-Dodaran, Ch. Bellin, M. Marangolo et al., J. Phys. Chem. Solids 5-6, 1132 (2006).

https://doi.org/10.1016/j.jpcs.2006.01.035

Z.A. Matysina, D.V. Schur, and S.Yu. Zaginaichenko, Carbon 7, 1369 (2003).

https://doi.org/10.1016/S0008-6223(03)00063-0

M. Riccò, T. Shiroka, M. Belli et al., Phys. Rev. B 15, 155437 (2005).

T. Shiroka, M. Riccò, F. Barbieri et al., Fiz. Tverd. Tela 3, 498 (2002).

S. Saito, K. Umemoto, S.G. Louie et al., Solid State Commun. 5, 335 (2004).

https://doi.org/10.1016/j.ssc.2004.02.011

A.M. Rao, P. Zhou, K.-A. Wang et.al., Science 259, 955 (1993).

https://doi.org/10.1126/science.259.5097.955

G.B. Adams, J.B. Page, O.F. Sankey et al., Phys. Rev. B 23, 17471 (1994).

https://doi.org/10.1103/PhysRevB.50.17471

J. Onoe, K. Takeuchi et al., Phys. Rev. Lett. 16, 2987 (1997).

https://doi.org/10.1103/PhysRevLett.79.2987

J. Onoe, A. Nakao, and K. Takeuchi, Phys. Rev. B 15, 10051 (1997).

https://doi.org/10.1103/PhysRevB.55.10051

P.C. Eklund, A.M. Rao, Y. Wang et al., Thin Solid Films 257, 211 (1995).

https://doi.org/10.1016/0040-6090(94)05706-0

P.C. Eklund, A.M. Rao, P. Zhou et al., Thin Solid Films 257, 185 (1995).

https://doi.org/10.1016/0040-6090(94)05704-4

Y. Wang, J.M. Holden, A.M. Rao et al., Phys.Rev. B 7, 4547 (1995).

https://doi.org/10.1103/PhysRevB.51.4547

J. Onoe, T. Hara, and K. Takeuchi., Synth. Metals 121, 1141 (2001).

https://doi.org/10.1016/S0379-6779(00)01070-5

T.A. Beu, J. Onoe, and A. Hida, Phys. Rev. B 72, 155416 (2005).

J. Onoe, T. Nakayama, M. Aono et al., J. Phys. Chem. Solids 65, 343 (2004).

https://doi.org/10.1016/j.jpcs.2003.08.040

A. Takashima, J. Onoe, and T. Nishii, J. Appl. Phys. 108, 033514 (2010).

https://doi.org/10.1063/1.3462446

Y. Todaa, S. Ryuzaki, and J. Onoe, Appl. Phys. Lett. 92, 094102 (2008).

https://doi.org/10.1063/1.2838347

F.C. Zavisluk, M. Behar, and D. Fink, Phys. Lett. A 226, 217 (1997).

https://doi.org/10.1016/S0375-9601(96)00917-6

K.L. Narayanau, M. Yamaguchi, N. Dharmarasu et al., Phys. Rev. B 178, 301 (2001).

https://doi.org/10.1016/S0168-583X(00)00488-2

R. Kalish, A. Samoiloff, A. Hoffman et al., Phys. Rev. B 24, 18235 (1993).

https://doi.org/10.1103/PhysRevB.48.18235

A.I. Ryabenikov, A.V. Petrov, N.M. Polkovnikova et al., Surf. Coat. Technol. 201, 8499 (2007).

https://doi.org/10.1016/j.surfcoat.2006.11.045

N. Baiwa, A. Ingals, D.K. Avasthi et al., Nucl. Instrum. Methods Phys. Res. B 212, 233 (2003).

K. Narumi, S. Sakai, H. Naramoto et al., Fulleren. Nanotubes Carbon Nanostruct. 14, 429 (2006).

https://doi.org/10.1080/15363830600666084

C. Ton-That, A.G. Shard, S. Egger et al., Phys. Rev. B 67, 155415 (2003).

https://doi.org/10.1103/PhysRevB.67.155415

X. Lu, M. Grobis, K.H. Khoo et al., Phys. Rev. B 70, 115418 (2007).

L.-L. Wang and H.-P. Cheng, Phys. Rev. B 69, 045404 (2004).

Z. Zhao, H. Wang, B. Wang et al., Phys. Rev. B 65, 235 (2002).

https://doi.org/10.1103/PhysRevC.65.032201

E. M.Shpilevskii, L.V. Baran, G.P. Okatova et al., in Diamond Films and Films of Related Materials (Khark. Fiz.-Tekhn. Inst., Kharkov, 2003), p. 265 (in Russian).

E.M. Shpilevskii, in Diamond Films and Films of Related Materials (Khark. Fiz.-Tekhn. Inst., Kharkov, 2003), p. 242 (in Russian).

M.R.C. Hunt, P. Rudolf, and S. Modesti. Phys. Rev. B 12, 7882 (1997).

B.W. Hoogenboom, R. Hesper, L.H. Tjeng et al., Phys. Rev. B 19, 11939 (1998).

https://doi.org/10.1103/PhysRevB.57.11939

M.R.C. Hunt, S. Modest et al., Phys. Rev. B 15, 10039 (1995).

Z. Zhao, H. Wang, B. Wang et al., Phys. Rev. B 65, 235 (2002).

https://doi.org/10.1103/PhysRevC.65.032201

Y. Maruyama, K. Ohno, and Y. Kawazol, Phys. Rev. B 3, 2070 (1995).

https://doi.org/10.1103/PhysRevB.52.2070

P. Zhou, K.-A. Wang, Y. Wang et al., Phys. Rev. B 4, 2595 (1992).

https://doi.org/10.1103/PhysRevB.46.2595

G. Dresselhaus, M.S. Dresselhaus, and P.C. Eklund, Phys. Rev. B 12, 6923 (1992).

https://doi.org/10.1103/PhysRevB.45.6923

A.F. Hebard, R.R. Ruel, and C.B. Eom, Phys. Rev. B 19, 14052 (1996).

https://doi.org/10.1103/PhysRevB.54.14052

A.V. Talyzin, U. Jansson, and A.V. Usatov, Fiz. Tverd. Tela 3, 483 (2002).

K. Akimoto and K. Kan'no, J. Phys. Soc. Jpn. 2, 630 (2002).

https://doi.org/10.1143/JPSJ.71.630

D.J. van den Heuvel, I.Y. Chan, E.J.J. Groenen et al., Chem. Phys. Lett. 233, 284 (1995).

https://doi.org/10.1016/0009-2614(94)01442-X

D.J. van den Heuvel, I.Y. Chan, E.J.J. Groenen et al., Chem. Phys. Lett. 231, 111 (1994).

https://doi.org/10.1016/0009-2614(94)01223-7

V.A. Karachevtsev, A.Yu. Glamazda, V.A. Pashinskaya et al., Fiz. Nizk. Temp. 8, 923 (2007).

V.A. Karachevtsev, P.V. Mateichenko, N.Yu. Nedbailo et al., Carbon 42, 2091 (2004).

https://doi.org/10.1016/j.carbon.2004.04.012

V.V. Kveder, V.D. Negrin, E.A. Shteiman et al., Zh. Eksp. Teor. Fiz. 2, 734 (1998).

T.R. Ohno, Y. Chen, S.E. Harvey et.al., Phys. Rev. B 4, 2389 (1993).

https://doi.org/10.1103/PhysRevB.47.2389

B. Morison, Z. Hu, J.P. Jorgensen et al., Phys. Rev. B. 9, 6051 (1999).

https://doi.org/10.1103/PhysRevB.59.6051

Yu.V. Shevtsov, S.V. Trubin, Yu.V. Shubin et al., Zh. Strukt. Khim. 45, 77 (2004).

https://doi.org/10.1007/s10947-006-0098-x

Published

2022-02-09

How to Cite

Dmytrenko О., Pavlenko О., Kulish М., Zabolotnyi М., Kornienko М., Brusentsov В., Rybii В., & Shpilevskyi Е. (2022). Component Hybridization in Thin Granulated C60−Cu Nanocomposite Films. Ukrainian Journal of Physics, 56(8), 828. https://doi.org/10.15407/ujpe56.8.828

Issue

Section

Nanosystems

Most read articles by the same author(s)