Synthesis of Nano-Sized TiO2/ZrO2/SiO2 Dispersions and Study of Their Structural, Optical, and Photocatalytic Properties

Authors

  • N.V. Vityuk O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • G.M. Eremenko O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • N.P. Smirnova O.O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • T.O. Busko Taras Shevchenko National University of Kyiv
  • M.P. Kulish Taras Shevchenko National University of Kyiv
  • O.P. Dmytrenko Taras Shevchenko National University of Kyiv
  • V.O. Golub Institute of Magnetism, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.11.1220

Keywords:

-

Abstract

The sol-gel method was applied to synthesize TiO2/ZrO2/SiO2 powders (a content of 21:9:70 mol.%) with the use of various silicon dioxide sources. Using the X-ray fluorescence analysis (XFA), we found that two phases (the anatase and srilankite ones) are crystallized simultaneously in all synthesized composites. The electron paramagnetic resonance (EPR) method was used to study the paramagnetic centers, which are formed on the anatase surface, and the influence of high-energy radiation on a change of the defect structure in corresponding specimens. A relationship between the defect structure of ternary composites and their photocatalytic activity has been established.

References

C.J. Brinker and A.J. Hurd, J. Phys. III (Paris) 4, 1231 (1994).

https://doi.org/10.1051/jp3:1994198

M. Itoh, H. Hattori, and K. Tanabe, J. Catalys. 35, 225 (1974).

P.N. Gunawidjaja, M.A. Holland, G. Mountjoy, D.M. Pickup, R.J. Newport, and M.E. Smith, Solid State Nucl. Magn. Reson. 23, 88 (2003).

https://doi.org/10.1016/S0926-2040(02)00019-X

J.B. Miller and I. Ko, Catalys. Today 35, 269 (1997).

https://doi.org/10.1016/S0920-5861(96)00161-7

N. Vityuk, Ya. Dyvinskyi, N. Smirnova, G. Eremenko, and O. Orans'ka, Khim. Fiz. Tekhnol. Poverkh. 9, 76 (2003).

L.A. Blumenfeld, V.V. Voevodski, and A.G. Semenov, Electron Spin Resonance in Chemistry (Hilger, London, 1973).

U. Siemon, D. Bahnemann, J.J. Testa, D. Rodriguez, I. Litter, and N. Bruno, J. Photochem. Photobiol. A 148, 247 (2002).

https://doi.org/10.1016/S1010-6030(02)00050-3

U. Diebold, Surf. Sci. Rep. 48, 53 (2003).

https://doi.org/10.1016/S0167-5729(02)00100-0

J.-Ch. Buhl and A. Willgallis, J. Cryst. Res. Technol. 24, 263 (1989).

W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, and Q.Chen, J. Phys. D 33, 912 (2000).

https://doi.org/10.1088/0022-3727/33/8/305

S. Boldish and W. White, Am. Mineralogist 83, 865 (1998).

https://doi.org/10.2138/am-1998-7-818

A. Dawson and P.V. Kamat, J. Phys. Chem. B 105, 960 (2001).

https://doi.org/10.1021/jp0033263

T.O. Busko, O.P. Dmitrenko, N.P. Kulish, N.M. Belyi, N.V. Vityuk, A.M. Eremenko, N.P. Smirnova, and V.V. Shlapatsky, Vopr. At. Nauki Tekhn. No. 2, 32 (2008).

N.V. Vityuk, G.M. Eremenko, N.P. Smirnova, and I.P. Bykov, Poverkhnya No. 2, 131 (2010).

R. Scotti, M.D. Arienzo, A. Testino, and F. Morazzoni, Appl. Catal. B 82, 58 (2008).

J.-M. Coronado, A.J. Maira, A. Martinez-Arias, J.C. Conesa, and J. Soria, J. Photochem. Photobiol. A 150, 213 (2002).

https://doi.org/10.1016/S1010-6030(02)00092-8

C.P. Kumar, N.O. Gopal, T.C. Wang, M.-S. Wong, and S.C.Ke. J. Phys. Chem. B 110, 5223 (2006).

https://doi.org/10.1021/jp057053t

R.F. Howe and M. Gratzel, J. Phys. Chem. 89, 4495 (1985).

https://doi.org/10.1021/j100267a018

P. Meriaudeau, M. Che, and C.K. Jorgensen, Chem. Phys. Lett. 5, 131 (1970).

https://doi.org/10.1016/0009-2614(70)80022-7

J. Kiwi, J.T. Suss, and S. Szopiro, Chem. Phys. Lett. 106, 135 (1984).

https://doi.org/10.1016/0009-2614(84)87027-X

Y. Li, D.S. Hwang, N.H. Lee, and S.J. Kim, J. Phys. Chem. Lett. 404, 25 (2005).

https://doi.org/10.1021/acs.jpclett.1c01558

M. Aundaithai and T.R.N. Kutty, Mater. Res. Bull. 23, 1675 (1988).

https://doi.org/10.1016/0025-5408(88)90258-9

D. Zwingel, Solid State Commun. 26, 775 (1978).

https://doi.org/10.1016/0038-1098(78)90740-8

J. Soria, J. Sanz, I. Sobrados, J.M. Coronado, F. Fresno, and M.D. Hernandez-Alonso, Catalys. Today 129, 240 (2007).

https://doi.org/10.1016/j.cattod.2007.08.001

G. Buscarino and S. Agnello, J. Non-Cryst. Solids 353, 577 (2007).

https://doi.org/10.1016/j.jnoncrysol.2006.12.031

P.V. Sushko, S. Mukhopadhyay, A.M. Stoneham, and A.L. Shluger, Microelectr. Eng. 80, 292 (2005).

https://doi.org/10.1016/j.mee.2005.04.083

S. Angello, N. Chiodini, A. Paleari, and A. Parlato, J. Non-Cryst. Solids 353, 573 (2007).

https://doi.org/10.1016/j.jnoncrysol.2006.10.026

D.L. Griscom, Phys. Rev. B. 20, 1823 (1979).

https://doi.org/10.1103/PhysRevD.20.1823

M. Boero, A. Pasquarello, J. Sarnthein, and R. Car, Phys. Rev. Lett. 78, 887 (1997).

https://doi.org/10.1103/PhysRevLett.78.887

T. Uchino, M. Takahashi, and T. Yoko, Phys. Rev. Lett. 86, 5522 (2001).

https://doi.org/10.1103/PhysRevLett.86.5522

V.V. Afanas'ev and A Stesmans, J. Phys.: Condens. Matter 12, 2285 (2000).

https://doi.org/10.1088/0953-8984/12/10/312

H. Fu, G. Lu, and S. Li, J. Photochem. Photobiol. A 114, 81 (1998).

Published

2022-02-03

How to Cite

Vityuk Н., Eremenko Г., Smirnova Н., Busko Т., Kulish М., Dmytrenko О., & Golub В. (2022). Synthesis of Nano-Sized TiO2/ZrO2/SiO2 Dispersions and Study of Their Structural, Optical, and Photocatalytic Properties. Ukrainian Journal of Physics, 56(11), 1220. https://doi.org/10.15407/ujpe56.11.1220

Issue

Section

Nanosystems

Most read articles by the same author(s)