Fullerene-Amyloid Complexes as Perspective Nanocomposites: Molecular Docking Studies

Authors

  • V.M. Trusova Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University
  • P.E. Kuznietsov O.I. Akhiezer Department for Nuclear Physics and High Energy Physics, V.N. Karazin Kharkiv National University
  • O.A. Zhytniakivska Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University
  • U.K. Tarabara Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University
  • K.A. Vus Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University
  • G.P. Gorbenko Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University

DOI:

https://doi.org/10.15407/ujpe68.12.807

Keywords:

fullerenes, amyloid fibrils, molecular docking studies, nanocomposite materials

Abstract

The molecular interactions between the amyloid fibrils from Aβ-peptide, insulin and α-synuclein and fullerenes of different sizes, including C20, C36, C60, C70, and C84, have been studied using the molecular docking approach. The fullerenes are found to bind to the loop or turn region of Aβ- and α-synuclein fibrillar assemblies, but reside at the end of insulin amyloid fibers, reflecting the lower affinity of carbon nanostructures to the latter aggregated protein. For all systems studied here, the fullerene binding to amyloid fibrils is size-dependent, with larger fullerenes exhibiting a higher binding affinity and a lower total energy of complexation. The analysis of side chain contacts highlights the pivotal role of van der Waals forces, specifically, alkyl and π-alkyl interactions, in the stabilization of the fullerene-amyloid complexes. The results obtained are discussed in terms of novel nanocomposite materials based on carbon nanoparticles and fibrillar proteins, as well as of the fullerene role in anti-amyloid therapy.

References

A. Cho, S. Park. Exploring the global innovation systems perspective by applying openness index to national systems of innovation. J. Open Innov. Technol. Mark. Complex 8, 181 (2022).

https://doi.org/10.3390/joitmc8040181

P.K. Sharma, S. Dorlikar, P. Rawat, V. Malik, N. Vats, M. Sharma, J.S. Rhyee, A.K. Kaushik. Nanotechnology and its application: A review (Nanotechnology in Cancer Management, 2021).

https://doi.org/10.1016/B978-0-12-818154-6.00010-X

H. Mobeen, M. Safdar, A. Fatima, S. Afzal, H. Zaman, Z. Mehdi. Emerging applications of nanotechnology in context to immunology: A comprehensive review. Front. Bioeng. Biotechnol. 10, 1 (2022).

https://doi.org/10.3389/fbioe.2022.1024871

A.D. Goswami, D.H. Trivedi, N.L. Jadhav, D.V. Pinjari. Sustainable and green synthesis of carbon nanomaterials: A review. J. Environ. Chem. Engineer. 9, 106118 (2021).

https://doi.org/10.1016/j.jece.2021.106118

R. Sridharan, B. Monisha, P.S. Kumar, K.V. Gayathri. Carbon nanomaterials and its applications in pharmaceuticals: A brief review. Chemosphere 294, 133731 (2022).

https://doi.org/10.1016/j.chemosphere.2022.133731

R.B. Onyancha, K.E. Ukhurebor, U.O. Aigbe, O.A. Osibote, H.S. Kusuma, H. Darmokoesoemo. A methodical review on carbon-based nanomaterials in energy-related applications. Ads. Sci. Technol. 2022, 4438286 (2022).

https://doi.org/10.1155/2022/4438286

P. Harris. Fullerene polymers: A brief review. J. Carbon Res. 6, 71 (2020).

https://doi.org/10.3390/c6040071

M. Paukov, C. Kramberger, I. Begichev, M. Kharlamova, M. Burdanova. Functionalized fullerenes and their applications in electrochemistry, solar cells, and nanoelectronics. Materials 16, 1276 (2023).

https://doi.org/10.3390/ma16031276

R. Bakry, R.M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C.W. Huck, G.K. Bonn. Medicinal applications of fullerenes. Int. J. Nanomedicine 2, 639 (2007).

H. Kazemzadeh, M. Mozafari. Fullerene-based delivery systems. Drug Discovery Today 24, 898 (2019).

https://doi.org/10.1016/j.drudis.2019.01.013

N. Malhotra, G. Audira, A.L. Castillo, P. Siregar, J. Ruallo, M.J. Roldan, J.-R. Chen, J.-S. Lee, T.-R. Ger, C.-D. Hsiao. An update report on the biosafety and potential toxicity of fullerene-based nanomaterials toward aquatic animals. Oxid. Med. Cell Longev. 2021, 7995223 (2021).

https://doi.org/10.1155/2021/7995223

C. Li, R. Mezzenga. The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology. Nanoscale 5, 6207 (2013).

https://doi.org/10.1039/c3nr01644g

P.C. Ke, R. Zhou, L.C. Serpell, R. Riek, T.P.J. Knowles, H.A. Lashuel, E. Gazit, I.W. Hamley, T.P. Davis, M. Fandrich, D.E. Otzen, M.R. Chapman, C.M. Dobson, D.S. Eisenberg, R. Mezzenga. Half a century of amyloids: past, present and future. Chem. Soc. Rev. 49, 5473 (2020).

https://doi.org/10.1039/C9CS00199A

B. Choi, T. Kim, S.W. Lee, K. Eom. Nanomechanical characterization of amyloid fibrils using single-molecule experiments and computational simulations. Nanoscale Biol. Mater. 2016, 5873695 (2016).

https://doi.org/10.1155/2016/5873695

C. Li, R. Mezzenga. Functionalization of multiwalled carbon nanotubes and their pH-responsive hydrogels with amyloid fibrils. Langmuir 28, 10142 (2012).

https://doi.org/10.1021/la301541d

J. Majoroˇsova, M.A. Schroer, N. Tomaˇsoviˇcov'a, M. Batkov'a, P.-S. Hu, M. Kubovˇc'ıkov'a, D.I. Svergun, P. Kopˇcansk'y. Effect of the concentration of protein and nanoparticles on the structure of biohybrid nanocomposites. Biopolymers 111, e23342 (2020).

https://doi.org/10.1002/bip.23342

C. Li, J. Adamcik, R. Mezzenga. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat. Nanotechnol. 7, 421 (2012).

https://doi.org/10.1038/nnano.2012.62

K. Siposova, V.I. Petrenko, O.I. Ivankov, A. Musatov, L.A. Bulavin, M.V. Avdeev, O.A. Kyzyma. Fullerenes as an effective amyloid fibrils disaggregating nanomaterial. ACS Appl. Mater. Interfaces 12, 29 (2020).

https://doi.org/10.1021/acsami.0c07964

Z. Liu, Y. Zou, Q. Zhang, P. Chen, Y. Liu, Z. Qian. Distinct binding dynamics, sites and interactions of fullerene and fullerenols with amyloid-β peptides revealed by molecular dynamics simulations. Int. J. Mol. Sci. 20, 2048 (2019).

https://doi.org/10.3390/ijms20082048

C. Bai, Z. Lao, Y. Chen, Y. Tang, G. Wei. Pristine and hydroxylated fullerenes prevent the aggregation of human islet amyloid polypeptide and display different inhibitory mechanisms. Front. Chem. 8, 51 (2020).

https://doi.org/10.3389/fchem.2020.00051

E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng, T. Ferrin. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605 (2004).

https://doi.org/10.1002/jcc.20084

I. Guedes, A.M.S. Barreto, D. Marinho, E. Krempser, M.A. Kuenemann, O. Sperandio, L.E. Dardenne, M.A. Miteva. New machine learning and physics-based scoring functions for drug discovery. Sci. Rep. 11, 3198 (2021).

https://doi.org/10.1038/s41598-021-82410-1

Y. Yan, D. Zhang, P. Zhou, B. Li, S.-Y. Huang. HDOCK: A web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucl. Acids Res. 45, W365 (2017).

https://doi.org/10.1093/nar/gkx407

M. Karplus, H. J. Kolker. Van der Waals forces in atoms and molecules. J. Chem. Phys. 41, 3955 (1964).

https://doi.org/10.1063/1.1725842

R. Macovez. Physical properties of organic fullerene cocrystals. Front. Mater. 4, 46 (2018).

https://doi.org/10.3389/fmats.2017.00046

J. Ribas, E. Cubero, F. Luque, M. Orozco. Theoretical study of alkyl-π and aryl-π interactions. Reconciling theory and experiment. J. Org. Chem. 67, 7057 (2002).

https://doi.org/10.1021/jo0201225

Y. Li, C. Zhao, F. Luo, Z. Liu, X. Gui, Z. Luo, X. Zhang, D. Li, C. Liu, X. Li. Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res. 28, 897 (2018).

https://doi.org/10.1038/s41422-018-0075-x

P. Huy, M. Li. Binding of fullerenes to amyloid beta fibrils: size matters. Phys. Chem. Chem. Phys. 16, 20030 (2014).

https://doi.org/10.1039/C4CP02348J

Downloads

Published

2024-01-06

How to Cite

Trusova, V., Kuznietsov, P., Zhytniakivska, O., Tarabara, U., Vus, K., & Gorbenko, G. (2024). Fullerene-Amyloid Complexes as Perspective Nanocomposites: Molecular Docking Studies. Ukrainian Journal of Physics, 68(12), 807. https://doi.org/10.15407/ujpe68.12.807

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

  • M.O. Azarenkov, A.V. Babich, M.I. Bazaleev, V.V. Bryukhovetsky, V.A. Bilous, L.A. Bulavin, I.Ye. Garkusha, I.O. Girka, V.Y. Denisov, Yu.L. Zabulonov, I.M. Karnauhov, Yu.O. Kasatkin, I.V. Kyryllin, G.D. Kovalenko, O.O. Konovalenko, V.Yu. Korda, I.O. Kocheshev, P.E. Kuznietsov, I.M. Neklyudov, V.V. Lytvynenko, V.I. Slisenko, Yu.V. Slyusarenko, V.Yu. Storizhko, G.D. Tolstolutska, I.M. Onishchenko, O.O. Popov, P.M. Ostapchuk, E.M. Prokhorenko, Vyacheslav Fedorovych Klepikov (to his 75th birthday) , Ukrainian Journal of Physics: Vol. 69 No. 8 (2024)