Sm3+-Doped Molybdenum Gadolinium Borate Glasses for Orange Emission Laser Active Medium

  • R. Rajaramakrishna Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University
  • Y. Ruangtawee Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University
  • J. Kaewkhao Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University
Keywords: trivalent samarium, molecular structure, borate glasses, optical properties, fluorescence spectrum, CIE chromaticity


Room temperature visible and near infrared optical absorption and emission spectra of Sm3+-doped molybdenum gadolinium borate (MGB) glasses with molar composition 25MoO3-20Gd2O3–(55 − x)B2O3−xSm2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0 mol.%) have been analyzed. The experimental oscillator strengths of absorption bands have been used to determine the Judd–Ofelt (J–O) parameters. Fluorescence spectra were recorded by exciting the samples at 402 nm. Using the J–O parameters and luminescence data, the radiative transition probabilities (AR), branching ratios (BR), and stimulated emission cross-sections oe) are obtained. The decay curves of the 4G5/2 - 6H7/2 transition exhibit a non-exponential curve fit for all concen-
trations. The concentration quenching has been attributed to the energy transfer through the cross-relaxation between Sm3+ ions. 4G5/2 level and its relative quantum efficiencies are measured. Intense reddish-orange emission corresponding to the 4G5/2−6H7/2 transition has been observed in these glasses at the 487-nm excitation, From the values of the radiative parameters, it is concluded that the 1.0-mol% Sm3+-doped MGB glass may be used as a laser active medium with the emission wavelength at 599 nm. The analysis of the non-exponential behavior of decay curves through the Inokuti–Hirayama model indicates that the energy transfer between Sm3+ ions is of dipole–dipole type. The quantum efficiency for the 4
G5/2 level of MGBSm10 glass is found to be 67%. The co-related color temperature obtained from CIE (Commission International de L’Eclairage) for these glass samples is ∼1620 K for the indicated orange emission at the 402-nm excitation.


  1. R.G. Gossink. Thesis, Eindhoven O971. Philips Res. Rep. Suppl. No. 3. (1971).

  2. R. Iodanova, V. Dimitrov, Y. Dimitriev, S. Kassabov, D. Kissuski. Glass formation and structure in the system MoO3–Bi2O3–Fe2O3. J. Non-Cryst. Solids 231, 227 (1998).

  3. Y. Dimitriev, E. Kashchieva, R. Iordanova, G. Tyuliev. Glass formation and microheterogeneous structure in the system B2O3–V2O5–MoO3. Phys. Chem Glasses 44, 155 (2003).

  4. M. Milanova, R. Iordanova, Y. Dimitriev, D. Klissurski. Glass formation in the MoO3Bi2O3–PbO system. J. Mat. Sci. Lett. 39, 5591 (2004).

  5. P. Syam Prasad, B.V. Raghavaiah, R. Balaji Rao, N. Veeraiah. Dielectric dispersion in the PbO–MoO3–B2O3 glass system. Solid State Commun. 235, 132 (2004).

  6. B.B. Das, R. Ambika. EPR and IR studies on the local structure of 80MoO3–20B2O3 glass. Chem. Phys. Lett. 370, 670 (2003).

  7. L. Bih, E.L. Omari, J.M. Reau, A. Yacoubi, A. Nadiri, M. Haddad. Electrical properties of glasses in the Na2O–MoO3–P2O5 system. Mater. Lett. 50, 308 (2001).

  8. M. Srinivasa Reddy, V.L.N. Sridhar Raja, N. Veeraiah. Molybdenum ion as a structural probe in PbO–Sb2O3–B2O3 glass system by means of dielectric and spectroscopic investigations. EPJ Appl. Phys. 37, 203 (2007).

  9. G. Little Flower, G. Sahaya Baskaran, M. Srinivasa Reddy, N. Veeraiah. The structural investigations of PbO–P2O5–Sb2O3 glasses with MoO3 as additive by means of dielectric, spectroscopic and magnetic studies. Physica B 393, 61 (2007).

  10. G. Srinivasarao, N. Veeraiah. Characterization and physical properties of PbO–As2O3 glasses containing molybdenum ions. J. Solid State Chem. 166, 104 (2002).

  11. C.K. Jayasankar, P. Babu. Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses. J. Alloys Compd. 307, 82 (2000).

  12. P. Subbalakshmi, B.V. Raghavaiah, R. Balaji Rao, N. Veeraiah. Spectroscopic properties of Mo–Wo3–P2O5: Ho3+ glasses. EPJ Appl. Phys. (Fr.) 26, 169 (2004).

  13. M. El-Hofy, I.Z. Hager. Ionic Conductivity in MoO3–BaF2–AgI–LiF Glasses. Phys. Status Solidi A 182, 697 (2000).<697::AID-PSSA697>3.0.CO;2-N

  14. J. Kaewkhao, N. Wantana, S. Kaewjaeng, S. Kothan, H.J. Kim. Luminescence characteristics of Dy3+ doped Gd2O3–CaO–SiO2–B2O3 scintillating glasses. J. Rare Earths 34 (6), 583 (2000).

  15. Chunmei Tang, Shuang Liu, Liwan Liu, Dan Ping Chen. Luminescence properties of Gd3+-doped borosilicate scintillating glass. J. Lumin. 160, 317 (2015).

  16. Z. Onderisinova, M. Kucera, M. Hanus, M. Nikl. Temperature-dependent nonradiative energy transfer from Gd3+ to Ce3+ ions in co-doped LuAG: Ce, Gd garnet scintillators. J. Lumin. 167, 106 (2015).

  17. Xin-Yuan Sun, Da-Guo Jiang, Wen-Feng Wang, Chun-Yan Cao, Yu-Nong Li, Guo-Tai Zhen, Hong Wang, Xin-Xin Yang, Hao-Hong Chen, Zhi-Jun Zhang, Jing-Tai Zhao. Luminescence properties of B2O3–GeO2–Gd2O3 scintillating glass doped with rare-earth and transition-metal ions. Nucl. Instrum. Methods A 716, 90 (2013).

  18. M.K. Halimah, W.M. Daud, H.A.A. Sidek. ???? J. App. Sci. 2340, 1546 (2005).

  19. M.R. Raddy, V.R. Kumar, N. Veeraiah. Effect of chromium impurity on dielectric relaxation effects of ZnF2–PbO–TeO2 glasses. Indian J. Pure and Appl. Phys. 33, 48 (1995).

  20. B. Eraiah. Optical properties of samarium doped zinctellurite glasses. J. Indian Acad. of Sci. 29 (4), 375 (2006).

  21. Pedro Damas, Joa Coelho, Graham Hungerford, N. Sooraj Hussain. Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides. Materials Research Bulletin 47, 3489 (2012).

  22. M. Subhadra, P. Kistaiah. Effect of Bi2O3 content on physical and optical properties of 15Li2O–15K2O–xBi2O3–(65 ? x) B2O3: 5V2O5 glass system. Physica B 406, 1501 (2011).

  23. Y.B. Saddeek, L.A.E. Latif. Effect of TeO2 on the elastic moduli of sodium borate glasses. Physica B 348, 475 (2004).

  24. E.I. Kamitsos. Infrared studies of borate glasses. Phys. Chem. Glasses 44 (2), 79 (2003).

  25. A. Mogus-Milankovic, A. Santic, A. Gajovic, D.E. Day. Spectroscopic investigation of MoO3–Fe2O3–P2O5 and SrO–Fe2O3–P2O5 glasses. Part I. J. Non-Cryst. Solids 76, 325 (2003).

  26. M. Rada, S. Rada, P. Pascuta, E. Culea. Structural properties of molybdenum-lead-borate glasses. Spectrochimica Acta Part A 77, 832 (2010).

  27. M.S. Reddy, V.L.N. Sridhar Raja, N. Veeraiah. Molybdenum ion as a structural probe in PbO–Sb2O3–B2O3 glass system by means of dielectric and spectroscopic investigations. EPJ Appl. Phys. 37 (2), 203 (2007).

  28. U. Selveraj, K.J. Rao. Role of lead in lead phosphomolybdate glasses and a model of structural units. J. Non-Cryst. Solids 104, 300 (1988).

  29. K. Koteswara Rao, M. Vithala, D. Ravinder. Preparation, infrared and magnetic susceptibility studies of LnB3O6 (Ln =Gd, Eu and Sm). J. Magnetism and Magnetic Materials 253, 65 (2002).

  30. Okan Icten, Dursun Ali Kose, Birgul Zumreoglu-Karan. Fabrication and characterization of magnetite-gadolinium borate nanocomposites. J. Alloys and Compounds 726, 437 (2017).

  31. B.R. Judd. Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962).

  32. G.S. Ofelt. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962).

  33. C.K. Jayasankar, E. Rukmini. Optical properties of Sm3+ ions in zinc and alkali zinc borosulphate glasses. Opt. Mater. 8, 193 (1997).

  34. R. Rajaramakrishna, B. Knorr, V. Dierolf, R.V. Anavekar, H. Jain. Spectroscopic properties of Sm3+-doped lanthanum borogermanate glass. J. Luminescence 156, 192 (2014).

  35. B.C. Jamalaiah, J. Suresh Kumar, A. Mohan Babu, T. Suhasini, L. Rama Moorthy. Photoluminescence properties of Sm3+ in LBTAF glasses. J. Luminescence 129, 363 (2009).

  36. L. Boehm, R. Reisfeld, N. Spector. Optical transitions of Sm3+ in oxide glasses. J. Solid State Chem. 28, 75 (1979).

  37. H. Ahrens, M. Wollenhaupt, P. Frobel, J. Lin, K. Barner, G.S. Sun, R. Braunstein. Determination of the Judd––Ofelt parameters of the optical transitions of Sm3+ in lithiumborate tungstate glasses. J. Lumin. 82, 177 (1999).

  38. J. Mc Dougall, D.B. Hollis, M.J.P. Payne. Judd–Ofelt parameters of rare-earth ions in ZBLALi, ZBLAN and ZBLAK fluoride glass. Phys. Chem. Glasses 35, 258 (1994).

  39. S. Tanabe, T. Hanada, T. Ohayagi, N. Soga. Correlation between 151Eu Mossbauer isomer shift and Judd–Ofelt ?6 parameters of Nd3+ ions in phosphate and silicate laser. Phys. Rev. B 48, 10591 (1993).

  40. H. Takabe, Y. Nagano, K. Morinaga. Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses. J. Am. Ceram. Soc. 77, 2132 (1994).

  41. S. Tanabe, T. Ohayagi, N. Soga, T. Hanada. Compositional dependence of Judd–Ofelt parameters of Er3+ ions in alkali-metal borate glasses. Phys. Rev. B 46, 3305 (1992).

  42. M. Jayasimhadri, L.R.Moorthy, S.A. Saleem,R.V.S.S.N.Ravi Kumar. Spectroscopic characteristics of Sm3+-doped alkali fluorophosphate glasses Spectrochim. Acta A 64, 939 (2006).

  43. V. Venkatramu, P. Babu, C.K. Jayasankar, T. Tr?oster, W. Sievers, G. Wortmann. Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses. Opt. Mater. 29, 1429 (2007).

  44. R. Van Deun, K. Binnemans, C. Gorller Walrand. Spectroscopic properties of trivalent samarium ions in glasses. SPIE 3622, 175 (1999).

  45. C.K. Jayasankar, P. Babu. Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses. J. Alloys Compd. 307, 82 (2000).

  46. M.B. Saisudha, J. Ramakrishna. Optical absorption of Nd3+, Sm3+ and Dy3+ in bismuth borate glasses with large radiative transition probabilities. Opt. Mater. 18, (2002) 403 (2002).

  47. F. Lahoz, I.R. Martin, J. Mendez-Ramos, P. Nunez. Dopant distribution in a Tm3+–Yb3+ codoped silica based glass ceramic: An infrared-laser induced upconversion study. J. Chem. Phys. 120, 6180 (2004).

  48. C. Gorller-Walrand, K. Binnemans. Handbook on the Physics and Chemistry of Rare Earths. Edited by K.A. Gschneidner, jr., L. Eyring(North-Holland, 1998), Vol. 25, Chap. 167.

  49. V.D. Rodriguez, I.R. Martin, R. Alcalae, R. Cases. Optical properties and cross relaxation among Sm3+ ions in fluorzincate glasses. J. Lumin. 54, 231 (1992).

  50. R. Praveena, V. Venkatramu, P. Babu, C.K. Jayashankar. Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO–Nb2O5 glasses. Physica B 403, 3527 (2008).

  51. M. Inokuti, F. Hirayama. Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 43, 1978 (1965).

  52. P. Nachimuthu, R. Jagannathan, V. Nirmal Kumar, D. Narayana Rao. Absorption and emission spectral studies of Sm3+ and Dy3+ ions in PbO–PbF2 glasses. J. Non-Cryst. Solids 217, 215 (1997).

  53. Eun-Jin Cho, M. Jayasimhadri, Ki-Wan Jang, Gon Kim, Ho-Sueb Lee. Optical spectroscopy and luminescence properties of Sm3+-doped lead-germanate glasses. J. Korean Phys. Soc. 52, 599 (2008).

  54. L. Mishra, A. Sharma, A.K. Vishwakarma, K. Jha, M. Jayasimhadri, B.V. Ratman, K. Jang, A.S. Rao, R.K. Sinha. White light emission and color tunability of dysprosium doped barium silicate glasses. J. Lumin. 169, 121 (2016).

  55. S.N. Rasool, L.R. Moorthy, C.K. Jayasankar. Optical and luminescence properties of Dy3+ ions in phosphate based glasses. Solid State Sci. 22, 89 (2013).
How to Cite
Rajaramakrishna, R., Ruangtawee, Y., & Kaewkhao, J. (2018). Sm3+-Doped Molybdenum Gadolinium Borate Glasses for Orange Emission Laser Active Medium. Ukrainian Journal of Physics, 63(8), 721.
Optics, atoms and molecules