New Fluorene-Based Fluorescent Probe with Efficient Two-Photon Absorption

  • M. V. Bondar Institute of Physics
  • O. V. Przhonska Institute of Physics
  • O. D. Kachkovsky Insitute of Organic Chemistry
  • A. Frazer Department of Chemistry, University of Central Florida
  • A. R. Morales Department of Chemistry, University of Central Florida
  • K. D. Belfield Department of Chemistry, University of Central Florida
Keywords: two-photon absorption, fluorene, Z-scan method

Abstract

The synthesis, linear photophysical characterization, and two-photon absorption (2PA) properties of new fluorene derivative 3,30-(pyridine-2,6-diyl)bis(1-(7-(diphenylamino)-9,9-dihexyl-9H-fluoren-2-yl)propane-1,3-dione) (1) have been presented. The steady-state absorption, fluorescence and excitation anisotropy spectra along with the fluorescence decay kinetics of 1 are obtained in the solvents of different polarities at room temperature with respect to its potential application in bioimaging. The analysis of linear photophysical properties revealed a complicated nature of the main one-photon absorption band of 1, and the strong solvatochromic effect in steady-state fluorescence spectra is observed. The degenerate 2PA spectrum of 1 is measured in the spectral range 570–970 nm with the use of the open aperture Z-scan method under the 1-kHz femtosecond excitation, and the maximum values of two-photon action cross sections ~(100–130) GM are obtained. The nature of the linear absorption and the 2PA bands is analyzed by quantum chemical methods using a Gaussian program package.

References



  1. Z.S. An, S.A. Odom, R.F. Kelley, C. Huang, X. Zhang, S. Barlow, L.A. Padilha, J. Fu, S. Webster, D.J. Hagan, E.W. Van Stryland, S.M.R. Wasielewski, and S.R. Marder, J. Phys. Chem. A 113, 5585 (2009).
     https://doi.org/10.1021/jp900152r

  2. M. Rumi, S.J.K. Pond, T. Meyer-Friedrichsen, Q. Zhang, M. Bishop, Y. Zhang, S. Barlow, S.R. Marder, and J.W. Perry, J. Phys. Chem. C 112, 8061 (2008).
     https://doi.org/10.1021/jp710682z

  3. S.A. Odom, S. Webster, L.A. Padilha, D. Peceli, H. Hu, G. Nootz, S.J. Chung, S. Ohira, J.D. Matichak, O.V. Przhonska, A.D. Kachkovski, S. Barlow, J.L. Bredas, H.L. Anderson, D.J. Hagan, E.W. Van Stryland, and S.R. Marder, J. Am. Chem. Soc. 131, 7510 (2009).
     https://doi.org/10.1021/ja901244e

  4. M. Balu, L.A. Padilha, D.J. Hagan, E.W. Van Stryland, S. Yao, K. Belfield, S.J. Zheng, S. Barlow, and S. Marder, J. Opt. Soc. Am. B 25, 159 (2008).
     https://doi.org/10.1364/JOSAB.25.000159

  5. Q.D. Zheng, G.S. He, and P.N. Prasad, Chem. Phys. Lett. 475, 250 (2009).
     https://doi.org/10.1016/j.cplett.2009.05.040

  6. K.D. Belfield and K.J. Schafer, Chem. Mater. 14, 3656 (2002).
     https://doi.org/10.1021/cm010799t

  7. C.C. Corredor, Z.L. Huang, K.D. Belfield, A.R. Morales, and M.V. Bondar, Chem. Mater. 19, 5165 (2007).
     https://doi.org/10.1021/cm071336b

  8. K.J. Schafer, J.M. Hales, M. Balu, K.D. Belfield, E.W. Van Stryland, and D.J. Hagan, J. Photoch. Photobio. A 162, 497 (2004).
     https://doi.org/10.1016/S1010-6030(03)00394-0

  9. K.D. Belfield, M.V. Bondar, F.E. Hernandez, and O.V. Przhonska, J. Phys. Chem. C 112, 5618 (2008).
     https://doi.org/10.1021/jp711950z

  10. P.L. Wu, X.J. Feng, H.L. Tam, M.S. Wong, and K.W. Cheah, J. Am. Chem. Soc. 131, 886 (2009).
     https://doi.org/10.1021/ja806703v

  11. M. Velusamy, J.-Y. Shen, J.T. Lin, Y.-C. Lin, C.-C. Hsieh, C.-H. Lai, C.-W. Lai, M.-L. Ho, Y.-C. Chen, P.-T. Chou and J.-K. Hsiao, Adv. Funct. Mater. 19, 2388 (2009).
     https://doi.org/10.1002/adfm.200900125

  12. S.J. Andrasik, K.D. Belfield, M.V. Bondar, F.E. Hernandez, A.R. Morales, O.V. Przhonska, and S. Yao, Chem. Phys. Chem. 8, 399 (2007).
     https://doi.org/10.1002/cphc.200600568

  13. A. Hayek, F. Bolze, J.F. Nicoud, P.L. Baldeck, and Y. Mely, Photochem. Photobio. Sci. 5, 102 (2006).
     https://doi.org/10.1039/B509843B

  14. A.R. Morales, K.J. Schafer-Hales, A.I. Marcus, and K.D. Belfield, Bioconj. Chem. 19, 2559 (2008).
     https://doi.org/10.1021/bc800415t

  15. K.J. Schafer-Hales, K.D. Belfield, S. Yao, P.K. Frederiksen, J.M. Hales, and P.E. Kolattukudy, J. Biomed. Opt. 10, 051402/1 (2005).

  16. K. Konig, J. Microsc. 200, 83 (2000).
     https://doi.org/10.1046/j.1365-2818.2000.00738.x

  17. R.M. Williams, W.R. Zipfel, and W.W. Webb, Curr. Opin. Chem. Biol. 5, 603 (2001).
     https://doi.org/10.1016/S1367-5931(00)00241-6

  18. D.W. Piston, Trends Cell Biol. 9, 66 (1999).
     https://doi.org/10.1016/S0962-8924(98)01432-9

  19. T.R. Krishna, M. Parent, M.H. Werts, L. Moreaux, S. Gmouh, S. Charpak, A.-M. Caminade, J.-P. Majoral, and M. Blanchard-Desce, Angew. Chem. Int. Ed. 45, 4645 (2006).
     https://doi.org/10.1002/anie.200601246

  20. C. Xu and W.W. Webb, J. Opt. Soc. Am. B 13, 481(1996).
     https://doi.org/10.1364/JOSAB.13.000481

  21. P. Kaatz and D.P. Shelton, J. Opt. Soc. Am. B 16, 998 (1999).
     https://doi.org/10.1364/JOSAB.16.000998

  22. W.J. Yang, M.S. Seo, X.Q. Wang, S.J. Jeon, and B.R. Cho, J. Fluoresc. 18, 403 (2008).
     https://doi.org/10.1007/s10895-007-0280-3

  23. K.D. Belfield, M.V. Bondar, O.V. Przhonska, K.J. Schafer, and W. Mourad, J. Lumin. 97, 141 (2002).
     https://doi.org/10.1016/S0022-2313(02)00216-8

  24. K.D. Belfield, M.V. Bondar, O.V. Przhonska, and K.J. Schafer, J. Fluoresc. 12, 449 (2002).
     https://doi.org/10.1023/A:1021322228428

  25. C.C. Corredor, K.D. Belfield, M.V. Bondar, O.V. Przhonska, and S. Yao, J. Photoch. Photobio. A 184, 105 (2006).
     https://doi.org/10.1016/j.jphotochem.2006.03.036

  26. X. Wang, S. Yao, H.-Y. Ahn, Y. Zhang, M.V. Bondar, J.A. Torres, and K.D. Belfield, Biomed. Opt. Express 1, 453 (2010).
     https://doi.org/10.1364/BOE.1.000453

  27. X. Wang, D.M. Nguyen, C.O. Yanez, L. Rodriguez, H.-Y. Ahn, M.V. Bondar, and K.D. Belfield, J. Am. Chem. Soc. 132, 12237 (2010).
     https://doi.org/10.1021/ja1057423

  28. C.D. Andrade, C.O. Yanez, M.A. Qaddoura, X. Wang, C.L. Arnett, S.A. Coombs, R. Bassiouni, M.V. Bondar, and K.D. Belfield, J. Fluoresc. 21, 1223 (2011).
     https://doi.org/10.1007/s10895-010-0801-3

  29. K.D. Belfield, A.R. Morales, B.S. Kang, J.M. Hales, D.J. Hagan, E.W. Van Stryland, V.M. Chapela, and J. Percino, Chem. Mater. 16, 4634 (2004).
     https://doi.org/10.1021/cm049872g

  30. K.D. Belfield, A.R. Morales, J.M. Hales, D.J. Hagan, E.W. Van Stryland, V.M. Chapela, and J. Percino, Chem. Mater. 16, 2267 (2004).
     https://doi.org/10.1021/cm035253g

  31. J.P. Moreno and M.G. Kuzyk, J. Chem. Phys. 123, 194101/1 (2005).

  32. M.G. Kuzyk, J. Chem. Phys. 125, 154108/1 (2006).

  33. O.S. Finikova, T. Troxler, A. Senes, W.F. DeGrado, R.M. Hochstrasser, and S.A. Vinogradov, J. Phys. Chem. A 111, 6977 (2007).
     https://doi.org/10.1021/jp071586f

  34. P.A. Padmawar, J.E. Rogers, G.S. He, L.Y. Chiang, L.S. Tan, T. Canteenwala, Q.D. Zheng, J.E. Slagle, D.G. McLean, P.A. Fleitz, and P.N. Prasad, Chem. Mater. 18, 4065 (2006).
     https://doi.org/10.1021/cm060718z

  35. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Elect. 26, 760 (1990).
     https://doi.org/10.1109/3.53394

  36. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ц. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian (Wallingford, CT, 2009).

  37. A. Picot, C. Feuvrie, C. Barsu, F. Malvolti, B. Le Guennic, H. Le Bozec, C. Andraud, L. Toupet, and O. Maury, Tetrahedron 64, 399 (2008).
     https://doi.org/10.1016/j.tet.2007.10.064

  38. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006).
     https://doi.org/10.1007/978-0-387-46312-4

  39. G. Luchita, M.V. Bondar, S. Yao, I.A. Mikhailov, C.O. Yanez, O.V. Przhonska, A.E. Masunov, and K.D. Belfield, Appl. Mater. Interf. 3, 3559 (2011).
     https://doi.org/10.1021/am200783c

  40. L.A. Padilha, S. Webster, O.V. Przhonska, H.H. Hu, D. Peceli, J.L. Rosch, M.V. Bondar, A.O. Gerasov, Y.P. Kovtun, M.P. Shandura, A.D. Kachkovski, D.J. Hagan, and E.W. Van Stryland, J. Mater. Chem. 19, 7503 (2009).
     https://doi.org/10.1039/b907344b

  41. J. Fu, L.A. Padilha, D.J. Hagan, E.W. Van Stryland, O.V. Przhonska, M.V. Bondar, Y.L. Slominsky, and A.D. Kachkovski, J. Opt. Soc. Am. B 24, 67 (2007).
     https://doi.org/10.1364/JOSAB.24.000067

  42. B.J. Orr and J.F. Ward, Mol. Phys. 20, 513 (1971).
     https://doi.org/10.1080/00268977100100481

  43. K. Ohta, L. Antonov, S. Yamada, and K. Kamada, J. Chem. Phys. 127, (2007).

  44. A.S. Tatikolov, Z.A. Krasnaya, L.A. Shvedova, and V.A. Kuzmin, Int. J. Photoenergy 2, 23 (2000).
     https://doi.org/10.1155/S1110662X00000040

  45. J.B. Birks and D.J. Dyson, Proc. R. Soc. Lond. A 275, 135 (1963).
     https://doi.org/10.1098/rspa.1963.0159

  46. K.D. Belfield, M.V. Bondar, J.M. Hales, A.R. Morales, O.V. Przhonska, and K.J. Schafer, J. Fluoresc. 15, 3 (2005).
     https://doi.org/10.1007/s10895-005-0207-9

  47. K.D. Belfield, M.V. Bondar, F.E. Hernandez, A.R. Morales, O.V. Przhonska, and K.J. Schafer, Appl. Optics 43, 6339 (2004).
     https://doi.org/10.1364/AO.43.006339

  48. K.D. Belfield, M.V. Bondar, F.E. Hernandezt, O.V. Przhonska, and S. Yao, J. Phys. Chem. B 111, 12723 (2007).
     https://doi.org/10.1021/jp074456f

  49. K. Kamada, K. Ohta, Y. Iwase, and K. Kondo, Chem. Phys. Lett. 372, 386 (2003).
     https://doi.org/10.1016/S0009-2614(03)00413-5

  50. O.K. Nag, C.S. Lim, B.L. Nguyen, B. Kim, J. Jang, J.H. Han, B.R. Cho, and H.Y. Woo, J. Mater. Chem. 22, 1977 (2012).
     https://doi.org/10.1039/C1JM14693A

  51. V.L. Anderson and W.W. Webb, BMC Biotechnol. 11:125, 1 (2011).


Published
2018-10-10
How to Cite
Bondar, M., Przhonska, O., Kachkovsky, O., Frazer, A., Morales, A., & Belfield, K. (2018). New Fluorene-Based Fluorescent Probe with Efficient Two-Photon Absorption. Ukrainian Journal of Physics, 58(8), 748. https://doi.org/10.15407/ujpe58.08.0748
Section
Solid matter