Mechanisms of Structural Transformations in Polyethylene Nanocomposites with Multi-Walled Carbon Nanotubes

Authors

  • L.A. Bulavin Taras Shevchenko National University of Kyiv
  • M.A. Alieksandrov Taras Shevchenko National University of Kyiv
  • A.I. Misiura Taras Shevchenko National University of Kyiv
  • T.M. Pinchuk-Rugal’ Taras Shevchenko National University of Kyiv
  • A.P. Onanko Taras Shevchenko National University of Kyiv
  • Yu.E. Grabovskiy Taras Shevchenko National University of Kyiv
  • O.P. Dmytrenko Taras Shevchenko National University of Kyiv
  • M.P. Kulish Taras Shevchenko National University of Kyiv
  • O.L. Pavlenko Taras Shevchenko National University of Kyiv
  • T.O. Busko Taras Shevchenko National University of Kyiv
  • I.P. Pundyk Taras Shevchenko National University of Kyiv
  • A.I. Lesiuk Taras Shevchenko National University of Kyiv
  • V.V. Strelchuk V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe66.2.151

Keywords:

nanocomposites, dynamic elastic modulus, dynamic shear modulus, physical and mechanical properties

Abstract

The dynamic elastic Young, E′, and shear, G′, moduli in low-density polyethylene nanocomposites with multi-walled carbon nanotubes (MWCNTs) have been studied. It is shown that those parameters are nonmonotonic with the increasing nanotube concentration. The orientational structure of macromolecules adsorbed on nanotubes begins to play an important role, as the MWCNT content grows. Its modification gives rise to changes in the vibrational spectra and the electronic structure of composites and, as a result, may improve their mechanical and transport properties.

References

A.V. Eletskii. Carbon nanotubes. Usp. Fiz. Nauk 167, 945 (1997) (in Russian).

https://doi.org/10.3367/UFNr.0167.199709b.0945

A.V. Eletskii. Carbon nanotubes and their emission properties. Usp. Fiz. Nauk 172, 401 (2002) (in Russian).

https://doi.org/10.3367/UFNr.0172.200204b.0401

A.V. Eletskii. Sorption properties of carbon nanostructures. Usp. Fiz. Nauk 174, 1191 (2004) (in Russian).

https://doi.org/10.3367/UFNr.0174.200411c.1191

A.V. Eletskii. Transport properties of carbon nanotubes. Usp. Fiz. Nauk 179, 225 (2009) (in Russian).

https://doi.org/10.3367/UFNr.0179.200903a.0225

A.V. Eletskii. Carbon nanotube-based electron field emitters. Usp. Fiz. Nauk 180, 897 (2010) (in Russian).

https://doi.org/10.3367/UFNr.0180.201009a.0897

M.O. Lisunova et al. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur. Polym. J. 43, 949 (2007).

https://doi.org/10.1016/j.eurpolymj.2006.12.015

Ye.P. Mamunya, V.V. Levchenko, Ye.V. Lebedev. Thermo-mechanical and electrical properties of segregated polymer nanocomposites based on polyvinyl chloride and carbon nanotubes. Polimer. Zh. 30, 324 (2008) (in Ukrainian).

A.V. Eletskii, A.A. Knizhnik, B.V. Potapkin, J.M. Kenny. Electrical characteristics of carbon-nanotube doped composites. Usp. Fiz. Nauk 185, 225 (2015) (in Russian).

https://doi.org/10.3367/UFNr.0185.201503a.0225

A.V. Eletskii. Mechanical properties of carbon nanostructures and related materials. Usp. Fiz. Nauk 177, 223 (2007) (in Russian).

Ya.I. Estrin, E.R. Badamshina, A.A. Grischuk et al. Properties of nanocomposites based on crosslinked elastomeric polyurethane and ultra-small additives of single-walled carbon nanotubes. Vysokomol. Soed. A 54, 568 (2008) (in Russian).

A.L. Svistkov, L.A. Komar, G. Heinrich et al. Modeling of the formation process of oriented polymer layers near filler particles in polymer nanocomposites. Vysokomol. Soed. A 50, 903 (2008) (in Russian).

https://doi.org/10.1134/S0965545X08050155

B.A. Komarov, E.A. Dzhavadyan, V.I. Irzhak et al. Epoxyamine composites with ultra-low concentrations of single-walled carbon nanotubes. Vysokomol. Soed. A 53, 897 (2011) (in Russian).

https://doi.org/10.1134/S0965545X11060071

S. A. Gordeyev, G. Yu. Nikolaeva, K.A. Prokhorov. The Raman study of the structure of oriented polyethylenes. Laser Phys. 6, 121 (1996).

K.A. Prokhorov, G.Yu. Nikolaeva, S.A. Gordeyev, P.P. Pashinin, Raman scattering in oriented polyethylene: The C-H stretching region. Laser Phys. 11, 86 (2001).

T. McNally, P. Potschke, P. Halley et al. Polyethylene multiwalled carbon nanotube composites. Polymer 46, 8222 (2005).

https://doi.org/10.1016/j.polymer.2005.06.094

O.S. Nychyporenko, O.P. Dmytrenko, M.P. Kulish, T.M. Pinchuk-Rugal', Yu.Ye. Grabowskiy, M.A. Zabolotniy, V.A. Strel'chuk, A.S. Nikolenko, Yu.I. Sementsov, Ye.P. Mamunya. Radiation technologies of polymer composites properties modification. In Nanotechnology in the Security Systems. Edited by J. Bonˇca, S. Kruchinin (Springer, 2013), p. 69.

https://doi.org/10.1007/978-94-017-9005-5_7

O.S. Nychyporenko, O.P. Dmytrenko, M.P. Kulish et al. Radiation-induced structure transformation and vibrational spectra of polyethylene. Nucl. Phys. At. Energy 16, 367 (2015).

https://doi.org/10.15407/jnpae2015.04.367

O.S. Nychyporenko, O.P. Dmytrenko, M.P. Kylish et al. Radiation-stimulated alteration of electrical conductivity of polyethylene nanocomposites with carbon nanotubes. Vopr. At. Nauki Tekhn. 102, 99 (2016) (in Ukrainian).

T. Kida, T. Oku, Y. Hiejima et al. Deformation mechanism of high-density polyethylene probed by in situ Raman spectroscopy. Polymer 58. 88 (2015).

https://doi.org/10.1016/j.polymer.2014.12.030

T. Kida, Y. Hiejima, K-H Nitta. Rheo-optical Raman study of microscopic deformation in high-density polyethylene under hot drawing. Polymer Test. 44, 30 (2015).

https://doi.org/10.1016/j.polymertesting.2015.03.018

T. Kida, Y. Hiejima, K-H. Nitta. Raman spectroscopic study of high-density polyethylene during tensile deformation. Int. J. Exper. Spectrosc. Techn. 1, 001 (2016).

https://doi.org/10.35840/2631-505X/8501

N. Garcia, M. Koyos, G. Teyssedre et al. The grafting of luminescent side groups onto poly(vinyl chloride) and the identification of local structural features, Polym. Degrad. Stabil. 92, 2300 (2007).

https://doi.org/10.1016/j.polymdegradstab.2007.01.033

S. Giuffrida, G.G. Condorelli, L.L. Costanzo. In situ synthesis of photoluminescent films of PVC, doped with Ce3+ ion. J. Photochem. Photobiol. A 195, 215 (2008).

https://doi.org/10.1016/j.jphotochem.2007.10.005

Z. Osawa, H. Kuroda. Differences in polyene formation between polyethylene and polypropylene during photo-irradiation. Polym. Photochem. 7, 231 (1986).

https://doi.org/10.1016/0144-2880(86)90029-1

S. Balbanov, K. Velitchkova, K. Krezhov. Photoluminescence of carbon-implanted ultra-high molecular weight polyethylene composite and its modification by gamma irradiation. Vacuum 69, 107 (2003).

https://doi.org/10.1016/S0042-207X(02)00316-0

H.M. Zidan, A. Tawansi, M. Abu-Elnader. Miscibility, optical and dielectric properties of UV-irradiated poly(vinylacetate)/poly(methylmethacrylate) blends. Physica B 339, 78 (2003).

https://doi.org/10.1016/j.physb.2003.08.054

H.M. Zidan. Filling level effect on the physical properties of MgBr2- and MgCl2-filled poly(vinyl acetate) films. J. Polymer Sci. 41, 112 (2003).

https://doi.org/10.1002/polb.10364

H.M. Zidan, M. Abu-Elnader. Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Physica B 335, 308 (2005).

https://doi.org/10.1016/j.physb.2004.11.023

H.M. Zidan, A. El-Khodary, I.A. El-Sayed, H.I. El-Bohy. Optical parameters and absorption studies of UV-irradiated azo dye-doped PMMA films, J. Appl. Polymer Sci. 117, 1416 (2010).

https://doi.org/10.1002/app.31939

M.A. Alieksandrov, T.M. Pinchuk-Rugal, O.P. Dmytrenko, M.P. Kulish, V.V. Shlapatska, V.M. Tkach. Radiation-stimulated formation of polyene structures in polyethylene nanocomposites with multi-walled carbon nanotubes. In Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Edited by O. Fesenko, L. Yatsenko (Springer, 2019), p. 323.

https://doi.org/10.1007/978-3-030-17759-1_22

Published

2021-03-04

How to Cite

Bulavin, L., Alieksandrov, M., Misiura, A., Pinchuk-Rugal’, T., Onanko, A., Grabovskiy, Y., Dmytrenko, O., Kulish, M., Pavlenko, O., Busko, T., Pundyk, I., Lesiuk, A., & Strelchuk, V. (2021). Mechanisms of Structural Transformations in Polyethylene Nanocomposites with Multi-Walled Carbon Nanotubes. Ukrainian Journal of Physics, 66(2), 151. https://doi.org/10.15407/ujpe66.2.151

Issue

Section

Liquid crystals and polymers