Peculiarities of the Fluorescence Quenching in the ATP – Calix[4]arene C-107 Aqueous Solutions


  • A. Starzhynska Taras Shevchenko National University of Kyiv
  • O. Dmytrenko Taras Shevchenko National University of Kyiv
  • M. Kulish Taras Shevchenko National University of Kyiv
  • O. Pavlenko Taras Shevchenko National University of Kyiv
  • I. Doroshenko Taras Shevchenko National University of Kyiv
  • A. Lesiuk Taras Shevchenko National University of Kyiv
  • T. Veklich Institute of Biochemistry of Nat. Acad. of Sci. of Ukraine
  • M. Kaniuk Institute of Biochemistry of Nat. Acad. of Sci. of Ukraine



adenosine triphosphate, calix[4]arene C-107, fluorescence quenching, computer modeling, IR absorption


The nature of fluorescence (FL) quenching for the aqueous solutions of adenosine triphosphate (ATP) with calix[4]arenes C-107 in the presence of silver nitrate AgNO3 is studied. It is shown that, for the water solutions of ATP and calix[4]arenes C-107 at a constant concentration of ATP molecules with an increase in the content of C-107, a complex nature of the PL quenching is observed, while maintaining the position of the PL band near 395 nm (λex = 285 nm). Its complexity is based, on the one hand, in the wide range of concentrations of C-107, at which it occurs, and, on the other hand, there are gaps in the quenching values for individual concentrations of calix[4]arene, near which it changes slightly. The indicated nature of the PL quenching significantly depends on the wavelength of excitation and the temperature. Similar quenching behavior is preserved, when AgNO3s alts are added to the ATP–C-107 mixtures, (CATP = CC-107 = 1 × 10−4M) in the concentration range from 1 × 10−4M to 1 × 10−3M. The computer modeling shows that the system ATP–C-107 can form energetically stable complexes, when ATP is located on the top of the calix[4]arene and along the wall of it due to π-π-stacking interaction, and the complexes are characterized by a shrinking of the energy bands.


A.H. Pakiaria, M. Farrokhnia, A. Moradshahi. Quantum chemical analysis of ATP, GTP and related compounds in gas phase. Chem. Soc. 7, 51 (2010).

F. Meurer, H.T Do, G. Sadowski, C. Held. Standard Gibbs energy of metabolic reactions: II. Glucose-6-phosphatase reaction and ATP hydrolysis. Biophys. Chem. A 223, 30 (2017).

J. Dunn, M.H Grider. Physiology, adenosine triphosphate. In: StatPearls. Treasure Island (FL) (StatPearls Publishing, 2021).

C.H Lee, H.C. Huang, H.F Juan. Reviewing ligand-based rational drug design: The search for an ATP synthase inhibitor. Intern. J. Mol. Sci. 12 (8), 5304 (2011),

R. Jastrzab, Z. Hnatejko, T. Runka, A. Odanic, L. Lomozika. Stability and mode of coordination complexes formed in the silver (i)/nucleoside systems. New J. Chem. 35, 1672 (2011).

F.T. Patrice, L. Zhao, E.K. Fodjo, D.Li, Y. Long. Spectroelectrochemical study of the AMP-Ag+ and ATP-Ag+ complexes using silver mesh electrodes. Analyst. 143, 2342 (2018).

S. Santi, A.W. Wahab, I. Raya, A. Ahmad, M. Maming. Synthesis, spectroscopic (FT-IR, UV-visible) study, and HOMO-LUMO analysis of adenosine triphosphate (ATP) doped trivalent terbium. J. Mol ecular Structure 1237, 130398 (2021).

V.G. Pivovarenko, O.B. Vadzyuk, S.O. Kosterin. Fluorometric detection of adenosine triphosphate with 3-hydroxy-4'-(dimethylamino) flavone in aqueous solutions. J. Fluorescence 16, 9 (2006).

V.G. Pivovarenko, O. Bugera, N. Humbert, A.S. Klymchenko, Y. M'ely. A toolbox of chromones and quinolones for measuring a wide range of ATP concentrations. Chem. Eur. J. 23, 11927 (2017).

D.A. Yushchenko, M.D. Bilokin, O.V. Pyvovarenko, G. Duportail, Y. Me'lyb, V.G. Pivovarenko. Synthesis and fluorescence properties of 2-aryl-3-hydroxyquinolones, a new class of dyes displaying dual fluorescence. Tetrahedron Lett. 47, 905 (2006).

L. Liu, L. Zhao, D. Cheng, X. Yao, Y.L. Highly. Highly selective fluorescence sensing and imaging of ATP using a boronic acid groups-bearing polythiophene derivate. Polymers 11, 1139 (2019).

S.O. Kosterin, V.I. Kalchenko, T.O. Veklich et al. Calixarenes as Modulators of ATP-Hydrilizing Systems of Smooth Muscles (Scientific Opinion, 2019), 15, 2.

T.O. Veklich, S.O. Kosterin, R.V. Rodik et al. Effect of calixarene-phosphonic acid on Na+, K+-ATPase activity in plasma membranes of the smooth-muscle cells Ukr. Biochem. J. 78, 70 (2006).

Y. Tian-Ming, Y. Zhi-Feng, W. Li, G. Jin-Ying, Y. SiDe, S. Xian-Fa. Supramolecular interaction between watersoluble cali[4]xarene and ATP-the catalysis of calix[4]arene for hydrolysis of ATP. Spectrochimica Acta Part 58 (14), 3033 (2002).

A.V. Lohvyn. O.P. Dmytrenko, M.P. Kulish, O.L. Pavlenko, A.P. Naumenko, A.I. Lesiuk, T.O. Veklich, M.I. Kaniuk. Spectral features of adenosine triphosphate solutions with calix[4]arene C-107. Appl. Nanosci. 13, 4809 (2023).

N.A. Goncharenko, O.L. Pavenko, O.P. Dmytrenko. Complexation in aqueous solutions of doxorubicin, bovine serum albumin and gold nanoparticles. Appl. Nanosci. A 10 (8), 2941 (2020).

N.A. Goncharenko, O.L. Pavenko, M.P. Kulish et al. Gold nanoparticles as a factor of influence on doxorubicin-bovine serum albumin complex. Appl. Nanosci. A 9 (5), 825 (2019).

L.A. Bulavin et al. Heteroassociation of antitumor agent doxorubicin with bovine serum albumin in the presence of gold nanoparticles. J. Mol. Liq. A 284, 633 (2019).

N.A. Goncharenko, O.P. Dmytrenko, M.P. Kulish et al. Mechanisms of the interaction of bovine serum albumin with anticancer drug gemcitabine. Mol. Cryst. Liq. Cryst. A 701 (1), 59 (2020).

O. Dmytrenko, M. Kulish, O. Pavlenko et al. Mechanisms of heteroassociation of ceftriaxone and doxorubicin drugs with bovine serum albumin. Soft Mat. Sys. Biomed. App. A 226, 219 (2022).

S.F. Sousa, P.A. Fernandes, M.J. Ramos. Protein-ligand docking: Current status and future challenges. Proteins. 65 (1), 15 (2006).

G.M. Morris., R. Huey, W. Lindstrom et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. Dec 30 (16), 2785 (2009).

K. Roos, C. Wu, W. Damm et al. OPLS3e: Extending force field coverage for drug-like small molecules J. Chem. Theory and Computatio 15 (3), 1863 (2019).

W.L. Jorgensen, J. Chandrasekhar, J.D. Madura et al. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79 (2), 926 (1983).

M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Rob, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople. Gaussian 03 (Gaussian, Inc., Wallingford, CT, 2003).




How to Cite

Starzhynska, A., Dmytrenko, O., Kulish, M., Pavlenko, O., Doroshenko, I., Lesiuk, A., Veklich, T., & Kaniuk, M. (2024). Peculiarities of the Fluorescence Quenching in the ATP – Calix[4]arene C-107 Aqueous Solutions. Ukrainian Journal of Physics, 69(2), 71.



Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)