Surface Stresses at the Initial Steps of the GexSi1−x/Si(001) Surface Oxidation

Authors

  • A. A. Grynchuk Taras Shevchenko National University of Kyiv
  • I. P. Koval Taras Shevchenko National University of Kyiv
  • M. G. Nakhodkin Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/ujpe59.02.0148

Keywords:

stress, stress anisotropy, oxidation

Abstract

Elastic stresses arising at the clean GexSi1−x/Si(001) surface, as well as at the initial stages of its oxidation, are considered qualitatively by analyzing the changes of unit cell dimensions occurring owing to the ad-dimer formation or the atomic or molecular adsorption on the unit cell surfaces. The stress character is found to be almost identical for the clean GexSi1−x/Si(001) surface and the GexSi1−x/Si(001) surface with adsorbed oxygen molecules or one to three adsorbed oxygen atoms. In addition, the surface stresses revealed a significant anisotropy: they turned out compressive along the dimer rows and three times as large as tensile stresses in the perpendicular direction (along the interdimer bonds).

References

F.K. LeGoues, R. Rosenberg et al., J. Appl. Phys. 65, 1724 (1989).

https://doi.org/10.1063/1.342945

T. Fukuda and T. Ogino, Surf. Sci. 380, 469 (1997).

https://doi.org/10.1016/S0039-6028(97)00017-4

T. Fukuda and T. Ogino, Surf. Sci. 357-358, 748 (1996).

https://doi.org/10.1016/0039-6028(96)00257-9

T. Fukuda, Jpn. J. Appl. Phys. 38, 1450 (1999).

https://doi.org/10.1143/JJAP.38.L1450

I.P. Koval, Yu.A. Len', and M.G. Nakhodkin, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 1, 275 (2006).

J.L. Alerharda, D. Vanderblit, R.D. Mende et al., Phys. Rev. Lett. 61, 1973 (1988).

https://doi.org/10.1103/PhysRevLett.61.1973

J. Dabrowski, and H.-J. Mussing, Silicon Surfaces and Formation of Interfaces. Basic Science in the Industrial World (World Scientific, Singapore, 2000); H. Ibach, Physics of Surfaces and Interfaces (Springer, Berlin, 2006).

M.C. Payene, Rev. Mod. Phys. 64, 1045 (1992).

https://doi.org/10.1103/RevModPhys.64.1045

V. Kon, Usp. Fiz. Nauk 172, 336 (2000).

https://doi.org/10.3367/UFNr.0172.200203e.0336

X. Gonze, B. Amadon, P.M. Anglade et al., Comp. Mater. Sci. 25, 478 (2002).

https://doi.org/10.1016/S0927-0256(02)00325-7

H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

https://doi.org/10.1103/PhysRevB.13.5188

A. Garcia and J.E. Northrup, Phys. Rev. B 48, 3156 (1993).

https://doi.org/10.1103/PhysRevB.48.3156

R. Shaltaf, M. ¸Cakmak, E. Mete et al., Surf. Sci. 566-568, 956 (2004).

https://doi.org/10.1016/j.susc.2004.06.036

M. ¸Cakmak, R. Shaltaf, G.P. Srivastava et al., Surf. Sci. 532-535, 661 (2003).

https://doi.org/10.1016/S0039-6028(03)00454-0

O.L. Alerhand, J. Wang, J.D. Joannopoulos et al., Phys. Rev. B 44, 6534 (1991).

https://doi.org/10.1103/PhysRevB.44.6534

T.V. Afanasieva, I.P. Koval, M.G. Nakhodkin et al, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 2, 207 (2007).

T. Afanasieva, I. Koval, M. Nakhodkin et al., Ukr. J. Phys. 56, 240 (2011).

T. Afanasieva, I. Koval, M. Nakhodkin et al., Ukr. J. Phys. 57, 355 (2012).

F. Liu and M.G. Lagally, Phys. Rev. Lett. 76, 3156 (1995).

https://doi.org/10.1103/PhysRevLett.76.3156

F. Wu and M.G. Lagally, Phys. Rev. Lett. 75, 2534 (1995).

https://doi.org/10.1103/PhysRevLett.75.2534

R. Felici, I.K. Robinson, C. Ottaviani et al., Surf. Sci. 375, 55 (1997).

https://doi.org/10.1016/S0039-6028(97)80005-2

T. Afanasieva, I. Koval, M. Nakhodkin et al., Ukr. J. Phys. 56, 352 (2011).

Published

2018-10-18

How to Cite

Grynchuk, A. A., Koval, I. P., & Nakhodkin, M. G. (2018). Surface Stresses at the Initial Steps of the GexSi1−x/Si(001) Surface Oxidation. Ukrainian Journal of Physics, 59(2), 148. https://doi.org/10.15407/ujpe59.02.0148

Issue

Section

Solid matter

Most read articles by the same author(s)