A Suggestion of the Graphene/Ge(111) Structure Based on Ultra-High Vacuum Scanning Tunneling Microscopy Investigation

  • A. Goriachko Department of Physical Electronics, Taras Shevchenko National University of Kyiv
  • P. V. Melnik Department of Physical Electronics, Taras Shevchenko National University of Kyiv
  • M. G. Nakhodkin Department of Nanophysics and Nanoelectronics, Taras Shevchenko National University of Kyiv
Keywords: germanium, graphene, scanning tunneling microscopy


We report on the 5.5√3 × 5.5√3 − R30 ∘ overlayer superstructure observed by the scanning tunneling microscopy on the Ge(111) surface. It shows pronounced effects of the local density of states leading to the strong dependence of STM images on the bias voltage and some dynamic changes of images at 300 K. This overlayer is tentatively interpreted as graphene formed in small submonolayer amounts due to the pyrolysis of hydrocarbon constituents of the residual atmosphere of the vacuum chamber during the annealing of a Ge(111) sample at 900 K. We suggest a model of the graphene/Ge(111)-5.5√3 × 5.5√3 − R30 ∘ heteroepitaxial interface, featuring the reconstructed Ge(111) substrate with no long-range order under the graphene layer, the latter being corrugated due to spatial variations of the interatomic geometry of the Ge(111) and graphene(0001) atomic lattices with extremely large mismatch.


K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896

A.H. Castro Neto, F. Guinea, N.M.R. Peres et al., Rev. Mod. Phys. 81, 109 (2009). http://dx.doi.org/10.1103/RevModPhys.81.109

J. Wintterlin and M.-L. Bocquet, Surf. Sci. 603, 1841 (2009). http://dx.doi.org/10.1016/j.susc.2008.08.037

U. Starke and C. Riedl, J. of Phys.: Cond. Matt. 21, 134016 (2009). http://dx.doi.org/10.1088/0953-8984/21/13/134016

S. Akc¨oltekin, M.El. Kharrazi, B. K¨ohler et al., Nanotechn. 20, 155601 (2009). http://dx.doi.org/10.1088/0957-4484/20/15/155601

P. Blake, E.W. Hill, A.H. Castro Neto et al., Appl. Phys. Lett. 91, 063124 (2007). http://dx.doi.org/10.1063/1.2768624

A.K. Geim and K.S. Novoselov, Nature Mater. 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849

L. Simon, M Stoffel, P. Sonnet et al., Phys. Rev. B 64, 035306 (2001). http://dx.doi.org/10.1103/PhysRevB.64.035306

C. Oshima and A. Nagashima, J. of Phys.: Cond. Matt. 9, 1 (1997). http://dx.doi.org/10.1088/0953-8984/9/1/004

A. Banerjee and H. Grebel, Nanotechn. 19, 365303 (2008). http://dx.doi.org/10.1088/0957-4484/19/36/365303

R.W. Olesinski and G.J. Abbaschian, Bull. Alloy Phase Diagr. 5, 484 (1984). http://dx.doi.org/10.1007/BF02872901

H.E. Elsayed-Ali and X. Zeng, Surf. Sci. 538, 23 (2003). http://dx.doi.org/10.1016/S0039-6028(03)00699-X

G. Wang, M. Zhang, Y. Zhu et al., Sci. Reports 3, 2465 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23955352

I.V. Lyubinetsky, P.V. Melnik, N.G. Nakhodkin et al., Vacuum 46, 219 (1995). http://dx.doi.org/10.1016/0042-207X(94)00047-6

I.V. Lyubinetsky, Ukr. J. Phys. 60, 160 (2015). http://dx.doi.org/10.15407/ujpe60.02.0160

A. Goriachko, P.V. Melnik, M.G. Nakhodkin, Ukr. J. Phys. 60, 1132 (2015). http://dx.doi.org/10.15407/ujpe60.11.1132

A. Goriachko, P.V. Melnik, A. Shchyrba et al., Surf. Sci. 605, 1771 (2011). http://dx.doi.org/10.1016/j.susc.2011.06.004

A. Goriachko, A. Shchyrba, P.V. Melnik et al., Ukr. J. Phys. 59, 805 (2014). http://dx.doi.org/10.15407/ujpe59.08.0805

R.S. Becker, B.S. Swartzentruber, J.S. Vickers et al., Phys. Rev. B 39, 1633 (1989). http://dx.doi.org/10.1103/PhysRevB.39.1633

E.S. Hirschorn, D.S. Lin, F.M. Leibsle et al., Phys. Rev. B 44, 1403 (1991). http://dx.doi.org/10.1103/PhysRevB.44.1403

G. Lee, H. Mai, I. Chizhov et al., J. of Vac. Sci. and Techn. A 16, 1006 (1998). http://dx.doi.org/10.1116/1.581222

G. Lee, H. Mai, I. Chizhov et al., Surf. Sci. 463, 55 (2000). http://dx.doi.org/10.1016/S0039-6028(00)00596-3

S. Marchini, S. G¨unther, J. Wintterlin, Phys. Rev. B 76, 075429 (2007). http://dx.doi.org/10.1103/PhysRevB.76.075429

A. Goriachko, H. Over, Zeit. Phys. Chem. 223, 157 (2009). http://dx.doi.org/10.1524/zpch.2009.6030

B. Borca, S. Barja, M. Garnica et al., Semicond. Sci. Techn. 25, 034001 (2010). http://dx.doi.org/10.1088/0268-1242/25/3/034001

A. Goriachko, P.V. Melnik, M.G. Nakhodkin et al., Materialwiss. Werkstofftech. 44, 129 (2013). http://dx.doi.org/10.1002/mawe.201300108

A.J. Mayne, F. Rose, C. Bolis et al., Surf. Sci. 486, 226 (2001). http://dx.doi.org/10.1016/S0039-6028(01)01057-3

How to Cite
Goriachko, A., Melnik, P., & Nakhodkin, M. (2019). A Suggestion of the Graphene/Ge(111) Structure Based on Ultra-High Vacuum Scanning Tunneling Microscopy Investigation. Ukrainian Journal of Physics, 61(1), 75. https://doi.org/10.15407/ujpe61.01.0075