Modified Mean-Field Theory of One-Dimensional Spin Models with Anisotropy and Long-Range Dipolar Interactions
DOI:
https://doi.org/10.15407/ujpe65.8.691Keywords:
Heisenberg model, Ising model, dipolar interactions, magnetization, magnetic susceptibility, modified mean-field theory, Monte Carlo simulationsAbstract
The effects of interactions and anisotropy on the magnetic properties of linear chains of superparamagnetic nanoparticles are studied theoretically by mapping the problem onto spin models. With zero anisotropy, the magnetic dipole moments are free to rotate, and the system resembles a classical ferromagnetic Heisenberg model with long-range dipolar interactions. With strong anisotropy, they are constrained to align with the chain, and the system resembles the classical ferromagnetic Ising model with long-range interactions. Using a modified mean-field theory, expressions for the magnetization curve and initial magnetic susceptibility are derived from the response of a single particle subject to an effective field arising from the applied field and the interactions with the other particles. Various approximations for the effective field are tested against results from Monte Carlo simulations. It is shown that, for physically relevant interaction strengths, reliable theoretical predictions for both the zero-anisotropy and strong-anisotropy cases can be derived in a simple closed form.
References
R.E. Rosensweig. Ferrohydrodynamics (Dover, 1998).
J. Carrey, B. Mehdaoui, M. Respaud. Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011). https://doi.org/10.1063/1.3551582
A.L. Elrefai, T. Sasayama, T. Yoshida, K. Enpuku. Empirical expression for DC magnetization curve of immobilized magnetic nanoparticles for use in biomedical applications. AIP Advances 8, 056803 (2018). https://doi.org/10.1063/1.5004725
E.A. Elfimova, A.O. Ivanov, P.J. Camp. Static magnetization of immobilized, weakly interacting, superparamagnetic nanoparticles. Nanoscale 11, 21834 (2019). https://doi.org/10.1039/C9NR07425B
A.O. Ivanov, O.B. Kuznetsova. Magnetic properties of dense ferrofluids: An influence of interparticle correlations. Phys. Rev. E 64, 041405 (2001). https://doi.org/10.1103/PhysRevE.64.041405
A.O. Ivanov, O.B. Kuznetsova. Magnetogranulometric analysis of ferrocolloids: Second-order modified mean field theory. Colloid J. 68, 430 (2006). https://doi.org/10.1134/S1061933X06040065
W.H. Keesom. On the deduction from Boltzmann's entropy principle of the second virial-coeficient for material particles (in the limit rigid spheres of central symmetry) which exert central forces upon each other and for rigid spheres of central symmetry containing an electric doublet at their centre. Comm. Phys. Lab. Leiden, Suppl. 24b, 23 (1912).
H.E. Stanley. Dependence of critical properties on dimensionality of spins. Phys. Rev. Lett. 20, 589 (1968). https://doi.org/10.1103/PhysRevLett.20.589
M.E. Fisher. Magnetism in one-dimensional systems - the Heisenberg model for infinite spin. Am. J. Phys. 32, 343 (1964). https://doi.org/10.1119/1.1970340
G.S. Joyce. Classical Heisenberg model. Phys. Rev. 155, 478 (1967). https://doi.org/10.1103/PhysRev.155.478
R.J. Baxter. Exactly Solved Models in Statistical Mechanics (Academic Press, 1982).
N.D. Mermin, H. Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133 (1966). https://doi.org/10.1103/PhysRevLett.17.1133
J. Fr¨olich, R. Israel, E.H. Lieb, B. Simon. Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1 (1978). https://doi.org/10.1007/BF01940327
P. Bruno. Absence of spontaneous magnetic order at nonzero temperature in one- and two-dimensional Heisenberg and XY systems with long-range interactions. Phys. Rev. Lett. 87, 137203 (2001). https://doi.org/10.1103/PhysRevLett.87.137203
D. Ruelle. Statistical mechanics of a one-dimensional lattice gas. Commun. Math. Phys. 9, 267 (1968). https://doi.org/10.1007/BF01654281
F.J. Dyson. Existence of a phase transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 91 (1969). https://doi.org/10.1007/BF01645907
F.J. Dyson. Non-existence of spontaneous magnetization in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 212 (1969). https://doi.org/10.1007/BF01661575
F.J. Dyson. An Ising ferromagnet with discontinuous long-range order. Commun. Math. Phys. 21, 269 (1971). https://doi.org/10.1007/BF01645749
J. Fr¨olich, T. Spencer. The phase transition in the one-dimensional Ising model with 1/r^2 interaction energy. Commun. Math. Phys. 84, 87 (1982). https://doi.org/10.1007/BF01208373
T. Morita, T. Horiguchi. Classical one-dimensional Heisenberg model with an interaction of finite range. Physica A 83, 519 (1976). https://doi.org/10.1016/0378-4371(75)90018-7
J.-P. Hansen, I.R. McDonald. Theory of Simple Liquids (Academic Press, 2006).
P.Weiss. L'hypoth'ese du champ mol'eculaire et la propri'et'e ferromagn'etique. J. Phys. Theor. Appl. 6, 661 (1907). https://doi.org/10.1051/jphystap:019070060066100
M. Eisenbach, M. Dijkstra, B.L. Gy¨orffy. On the states of orientations along a magnetically inhomogeneous nanowire. J. Mag. Magn. Mater. 208, 137 (2000). https://doi.org/10.1016/S0304-8853(99)00559-4
Y. Yamamura, H. Saitoh, M. Sumita, K. Saito. One-dimensional correlation in the dipolar Ising crystal tricyclohexyl-methanol: crystal structure revisited and heat capacity. J. Phys.: Condens. Matter 19, 176219 (2007). https://doi.org/10.1088/0953-8984/19/17/176219
J. K¨ofinger, G. Hummer, C. Dellago. Macroscopically ordered water in nanopores. Proc. Natl. Acad. Sci. U.S.A. 105, 13218 (2008). https://doi.org/10.1073/pnas.0801448105
J. K¨ofinger, G. Hummer, C. Dellago. A one-dimensional dipole lattice model for water in narrow nanopores. J. Chem. Phys. 130, 154110 (2009). https://doi.org/10.1063/1.3106223
J. K¨ofinger, C. Dellago. Single-file water as a one-dimensional Ising model. New J. Phys. 12, 093044 (2010). https://doi.org/10.1088/1367-2630/12/9/093044
K. Binder, D.P. Landau. A Guide to Monte Carlo Simulations in Statistical Physics, 4th (Cambridge Univ. Press, 2014).
H.E. Stanley. Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, 1971).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.