Investigation of Static Shear Stress in a Suspension of Co0.2Ni0.8Fe2O4 Nanoparticles in Sesame Oil
DOI:
https://doi.org/10.15407/ujpe68.6.412Keywords:
Co0.2Ni0.8Fe2O4, magnetorheological fluid, magnetic properties, static shear stress, yield shear stress, shear thinningAbstract
Spinel ferrite nanoparticles of Co0.2Ni0.8Fe2O4 composition are utilized as filler magnetic particles in the carrier fluid of sesame oil to prepare a magnetorheological fluid. The hydrothermal method is adopted to prepare CoNi ferrite nanoparticles. X-ray diffraction analysis is used to check the crystalline phase, and transmission electron microscopy is used to image the particles to find the size and shape of particles. The average size is about 18 nm. The magnetic properties are determined by measuring the hysteresis loop by the superconducting quantum interference device technique. The saturation magnetization is 59.4 emu/g, and the coercivity is 30 Oe. The Langevin fitting is applied to the hysteresis loop to show that the particle moment is about 16 × 103 μB. The viscosity and shear stress are measured against the shear rate, where the latter parameters are extracted from the viscosity and the viscometer spindle speed. The viscosity behavior showed the shear thinning against the shear rate. The viscosity increases with the magnetic field. The shear stress increases with the shear rate and has a very good matching with the Bingham model, rather than with the Herschel–Bulkley model, while describing the measured data. We observed a clear high static shear stress at low shear rates that are growing with the magnetic field. The yield stress was increased linearly with magnetic field strength.
References
T.Ramakrishnan, S.S. Kumar, S.J. S.Chelladurai, S. Gnanasekaran, S. Sivananthan, N.K. Geetha, R. Arthanari, G.B. Assefa. Recent developments in stimuli responsive smart materials and applications: An overview. J. Nanomaterials 2022 (Hindawi Limited, 2022).
https://doi.org/10.1155/2022/4031059
M. Dassisti, G. Brunetti, Magnetorheological fluid applications. Encyclopedia of Smart Materials 5, 260 (2022).
https://doi.org/10.1016/B978-0-12-815732-9.00038-3
M. Molazemi, H. Shokrollahi, B. Hashemi. The investigation of the compression and tension behavior of the cobalt ferrite magnetorheological fluids synthesized by coprecipitation. J. Magnetism and Magnetic Materials 346, 107 (2013).
https://doi.org/10.1016/j.jmmm.2013.06.053
A.G. Olabi, A. Grunwald. Design and application of magneto-rheological fluid. Materials & Design 28 (10), 2658 (2007).
https://doi.org/10.1016/j.matdes.2006.10.009
D.X. Phu, S.-B. Choi. Magnetorheological fluid based devices reported in 2013-2018: Mini-review and comment on structural configurations. Frontiers in Materials 6, 1 (2019).
https://doi.org/10.3389/fmats.2019.00019
J.S. Kumar, P.S. Paul, G. Raghunathan, D.G. Alex. A review of challenges and solutions in the preparation and use of magnetorheological fluids. Intern. J. Mechanical and Materials Engineering 14 (1), 13 (2019).
https://doi.org/10.1186/s40712-019-0109-2
X. De-kui, N. Song-lin, J. Hui, Y. Fang-long. Characteristics, optimal design, and performance analyses of MRF damper. Shock and Vibration 2018, 17 (2018).
https://doi.org/10.1155/2018/6454932
M.N. Wall. Understanding Shear Thinning Using Brownian Dynamics Simulation. B.Sc. Thesis (University of Tennessee at Chattanooga, 2021).
P. Vergne. 23 - Super Low Traction under EHD & Mixed Lubrication Regimes. Ed. by A. Erdemir, J.-M. Martin (Elsevier, 2007).
https://doi.org/10.1016/B978-044452772-1/50054-8
I. Lee, K. Park, J. Lee. Note: Precision viscosity measurement using suspended microchannel resonators. Rev. Sci. Instruments 83 (11), 116106 (2012).
https://doi.org/10.1063/1.4768245
I. Lee, J. Lee. Quality factor and vibration amplitude based viscosity measurements using suspended microchannel resonators. Sensors 1-4, IEEE, Taipei, Taiwan (2012).
N. Izumo, A. Koiwai, D. Division. Technological background and latest market requirements concerning "Static Viscosity" measurement with a tuning-fork vibration viscometer. In: Proceeding of Asia-Pacific Symposium on Measurementt of Mass, Force, and Tourqe (APMF 2009), June, 1-4, Tokyo, Japan (2009).
K. Shah, S.B. Choi. The influence of particle size on the rheological properties of plate-like iron particle based magnetorheological fluids. Smart Materials and Structures, 24 (1), 015004 (2015).
https://doi.org/10.1088/0964-1726/24/1/015004
R. Chen, M.G. Christiansen, P. Anikeeva. Maximizing hysteretic losses in magnetic ferrite nanoparticles via modeldriven synthesis and materials optimization. ACS Nano, 7 (10), 8990 (2013).
https://doi.org/10.1021/nn4035266
J.R. Morillas, J. de Vicente. Magnetorheology: A review. Soft Matter, 16 (42), 9614 (2020).
https://doi.org/10.1039/D0SM01082K
S.E. Premalatha, R. Chokkalingam, M. Mahendran. Magneto mechanical properties of iron based MR fluids. American J. Polymer Sci. 2 (4), 50 (2012).
https://doi.org/10.5923/j.ajps.20120204.01
P. Yagnasri, N. Seetharamaiah, U.S. Pantangi. Experimental investigation of nickel ferrite (NiFe2O4)-based nanomagnetorheological fluid characteristics using MR damper under triangular displacement excitation. J. Vibration Engineering & Technologies 10 (7), 2823 (2022).
https://doi.org/10.1007/s42417-022-00522-y
S.M.A. Tarmizi, N.A. Nordin, S.A. Mazlan, N. Mohamad, H.A. Rahman, S.A.A. Aziz, N. Nazmi, M.A. Azmi. Incorporation of cobalt ferrite on the field dependent performances of magnetorheological grease. J. Mater. Res. Technol. 9 (6), 15566 (2020).
https://doi.org/10.1016/j.jmrt.2020.11.028
M.M. Mubasher. Nanocomposites of multi-walled carbon nanotubes/cobalt ferrite nanoparticles: synthesis, structural, dielectric and impedance spectroscopy. J. Alloys and Compounds 866, 158750 (2021).
https://doi.org/10.1016/j.jallcom.2021.158750
R.S. Puche, M.J.T. Fern'andez, V.B. Guti'errez, R. G'omez, V. Marquina, M.L. Marquina, J.L.P. Mazariego, R. Ridaura. Ferrites nanoparticles MFe2O4 (M = Ni and Zn): hydrothermal synthesis and magnetic properties. Bolet'ın de La Sociedad Espa˜nola de Cer'amica y Vidrio 47 (3), 133 (2008).
https://doi.org/10.3989/cyv.2008.v47.i3.189
A. Aimable, B. Xin, N. Millot, D. Aymes. Continuous hydrothermal synthesis of nanometric BaZrO3 in supercritical water. J. Solid State Chem. 181 (1), 183 (2008).
https://doi.org/10.1016/j.jssc.2007.11.015
P. Puliˇsov'a, J. Kov'aˇc, A. Voigt, P. Raschman. Structure and magnetic properties of Co and Ni nano-ferrites prepared by a two step direct microemulsions synthesis. J. Magnetism and Magnetic Materials 341, 93 (2013).
https://doi.org/10.1016/j.jmmm.2013.04.003
S. Verma, P.A. Joy. Magnetic properties of superparamagnetic lithium ferrite nanoparticles. J. Appl. Phys. 98 (12), 124312 (2005).
https://doi.org/10.1063/1.2149493
J.H. Lee, C.K. Kim, S. Katoh, R. Murakami. Microwavehydrothermal versus conventional hydrothermal preparation of Ni- and Zn-ferrite powders. J. Alloys and Compounds 325 (1-2), 276 (2001).
https://doi.org/10.1016/S0925-8388(01)01375-5
S.H. Lafta. Preparing Painting Material from Li-Ni Ferrite with Isovalent Substitution. PhD Thesis (Al-Nahrain University, 2016)
S.H. Lafta. Impact of Ni2+ content on broadband ferromagnetic resonance of superparamagnetic Ni ferrite (Having Fe2+)-epoxy composite. IEEE Transactions on Magnetics 54 (9), 1 (2018).
https://doi.org/10.1109/TMAG.2018.2839731
W.M. Desoky, J. Gutierrez, M.S. ElBana, T.A. Elmoslami. Exploring the impact of nickel doping on the structure and lowtemperature magnetic features of cobalt nanospinel ferrite. Appl. Phys. A 128, 846 (2022).
https://doi.org/10.1007/s00339-022-05977-0
L.H. Abdel-Mohsen, S.H. Lafta, M.Sh. Hashim. Magnetic properties of Ba ferrite substituted by low fraction of Ni cations. Kuwait J. Sci. 50 3A, 1 (2023).
https://doi.org/10.48129/kjs.20239
S.N. Dipali, V.J. Swati, Vi.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar. Cation distribution, structural, morphological and magnetic properties of Co1−xZnxFe2O4 (x = 0-1) nanoparticles. RSC Adv. 5, 2338 (2015).
https://doi.org/10.1039/C4RA08342C
V.A. Bharati, S.R. Patade, S. Bajaj, R. Parlikar, A.P. Keche, V.V. Sondur. Structural and magnetic properties of nickel ferrite nanoparticles prepared by solution combustion method. J. Phys.: Conference Series 1644 (1), 012005 (2020).
https://doi.org/10.1088/1742-6596/1644/1/012005
A. Seeger. The effect of dislocation on the magnetization curves of ferromagnetic crystals. J. Phys. Colloques 27, 68 (1966).
https://doi.org/10.1051/jphyscol:1966308
C. Dong, G. Wang, D. Guo, C. Jiang, D. Xue. Growth, structure, morphology, and magnetic properties of Ni ferrite films. Nanoscale Res. Lett. 8 (1), 196 (2013).
https://doi.org/10.1186/1556-276X-8-196
A. Kumar, N. Yadav, D.S. Rana, P. Kumar, M. Arora, R.P. Pant. Structural and magnetic studies of the nickel doped CoFe2O4 ferrite nanoparticles synthesized by the chemical co-precipitation method. J. Magnetism and Magnetic Materials 394, 379 (2015).
https://doi.org/10.1016/j.jmmm.2015.06.087
S. Balideh, A. Aavazpour, G. Rezaei, A. Nikzad. Structural and magnetic properties of spinel nickel-cobalt ferrite nanoparticles substituted by dysprosium cation synthesized by hydrothermal method. Acta Physica Polonica A 140 (1), 14 (2021).
https://doi.org/10.12693/APhysPolA.140.14
M .Kishimoto, H. Latiff, E. Kita, H. Yanagihara. Structure and magnetic properties of Co-Ni spinel ferrite particles synthesized via co-precipitation and hydrothermal treatment at different temperatures. Materials Transactions 60 (4), 485 (2019).
https://doi.org/10.2320/matertrans.M2018347
F. Alahmari, M.A. Almessiere, Y. Slimani, H. G¨ung¨une¸s, S.E. Shirsath, S. Akhtar, M. Jaremko, A. Baykal. Synthesis and characterization of electrospun Ni0.5Co0.5−xCdxNd0.02Fe1.78O4 nanofibers, NanoStructures & Nano-Objects 24, 100542 (2020).
M. George, A.M. John, S.S. Nair, P.A. Joy, M.R. Anantharaman. Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J. Magnetism and Magnetic Materials 302 (1), 190 (2006).
https://doi.org/10.1016/j.jmmm.2005.08.029
V.K. Chakradhary, A. Ansari, M.J. Akhtar. Design, synthesis, and testing of high coercivity cobalt doped nickel ferrite nanoparticles for magnetic applications. J. Magnetism and Magnetic Materials 469, 674 (2019).
https://doi.org/10.1016/j.jmmm.2018.09.021
K.S. Rao, S.V.R. Nayakulu, M.C. Varma, G.S.V.R.K. Choudary, K.H. Rao. Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol-gel method. J. Magnetism and Magnetic Materials 451, 602 (2018).
https://doi.org/10.1016/j.jmmm.2017.11.069
V.H. Ojha, K.M. Kant. Temperature dependent magnetic properties of superparamagnetic CoFe2O4 nanoparticles. Physica B: Condensed Matter, 567, 87 (2019).
https://doi.org/10.1016/j.physb.2019.04.035
A. Zubair, Z. Ahmad, A. Mahmood, W.C. Cheong, I. Ali, M.A. Khan, A.H. Chughtai, M.N. Ashiq. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites. Results in Physics 7, 3203 (2017).
https://doi.org/10.1016/j.rinp.2017.08.035
T. Dippong, E.A. Levei, I.G. Deac, I. Petean, O. Cadar. Dependence of structural, morphological and magnetic properties of manganese ferrite on Ni-Mn substitution. Intern. J. Molecular Sci. 23 (6), 3097 (2022).
https://doi.org/10.3390/ijms23063097
H .Jalili, B. Aslibeiki, A.G. Varzaneh, V.A. Chernenko. The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles. Beilstein J. of Nanotechnology 10, 1348 (2019).
https://doi.org/10.3762/bjnano.10.133
E.K. Al-Shakarchi, S.H. Lafta, A.M. Musa, M. Farle, R. Salikov. Effect of Ni content on structural and magnetic properties of Li-Ni ferrites nanostructure prepared by hydrothermal method. J. Superconductivity and Novel Magnetism 29 (4), 923 (2016).
https://doi.org/10.1007/s10948-015-3334-9
M.C. Varma, G. Choudary, A.M. Kumar, K.H. Rao. Estimating the cation distributions in Ni0.65Zn0.35CoxFe2O4 ferrites using X-ray, FT-IR, and magnetization measurements. Phys. Res. Intern. 2014, 1 (2014).
https://doi.org/10.1155/2014/579745
S.H. Lafta. Hydrothermal temperature influence on magnetic and FMR properties of hematite nanoparticles. Surface Rev. Lett. 29 (07), (2022).
https://doi.org/10.1142/S0218625X22500962
M. Zhang, Q. Liu. Solvothermal synthesis and magnetic properties of monodisperse Ni0.5Zn0.5Fe2O4 hollow nanospheres. High Temperature Materials and Processes 38 (2019), 76 (2019).
https://doi.org/10.1515/htmp-2017-0101
D .Z'akutn'a, D. Niˇzˇnansk'y, L.C. Barnsley, E. Babcock, Z. Salhi, A. Feoktystov, D. Honecker, S. Disch. Field dependence of magnetic disorder in nanoparticles. Phys. Rev. X 10 (3), 031019 (2020).
https://doi.org/10.1103/PhysRevX.10.031019
C.R. Stein, M.T.S. Bezerra, G.H.A. Holanda, J. Andr'eFilho, P.C. Morais. Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures. AIP Advances 8 (5), 056303 (2018).
https://doi.org/10.1063/1.5006321
Z. Laherisheth, K. Parekh, R.V. Upadhyay. The effect of magnetic field on the structure formation in an oil-based magnetic fluid with multicore iron oxide nanoparticles. J. Nanofluids 7 (2), 292 (2018).
https://doi.org/10.1166/jon.2018.1457
A. Kolhatkar, A. Jamison, D. Litvinov, R. Willson, T. Lee. Tuning the magnetic properties of nanoparticles. Intern. J. Mol. Sci. 14 (8), 15977 (2013).
https://doi.org/10.3390/ijms140815977
J.L. Ortiz-Qui˜nonez, U. Pal, M.S. Villanueva. Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co-Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS Omega 3 (11), 14986 (2018).
https://doi.org/10.1021/acsomega.8b02229
A. Druc, A. Dumitrescu, A. Borhan, V. Nica, A. Iordan, M. Palamaru. Optimization of synthesis conditions and the study of magnetic and dielectric properties for MgFe2O4 ferrite. Open Chemistry 11 (8), 1330 (2013).
https://doi.org/10.2478/s11532-013-0260-1
M. Kub'ık, J.V'alek, J. Z'aˇcek, F. Jeniˇs, D. Borin, Z. Strecker, I. Maz˚urek. Transient response of magnetorheological fluid on rapid change of magnetic field in shear mode. Sci. Rep. 12 (1), 10612 (2022).
https://doi.org/10.1038/s41598-022-14718-5
N.V. Quoc, L.D. Tuan, L.D. Hiep, H.N. Quoc, S.B. Choi. Material characterization of MR fluid on performance of MRF based brake. Frontiers in Materials 6, 1 (2019).
https://doi.org/10.3389/fmats.2019.00125
J. Liu, X. Wang, X. Tang, R. Hong, Y. Wang, W. Feng. Preparation and characterization of carbonyl iron/strontium hexaferrite magnetorheological fluids. Particuology 22, 134 (2015).
https://doi.org/10.1016/j.partic.2014.04.021
G. Schramm. A practical approach to rheology and rheometry 2nd Edition, Thermo Electron (Karlsruhe) GmbH, Germany, (2004).
D. Utami, S.U. Mazlan, F. Imaduddin, N. Nordin, I. Bahiuddin, S. Abdul Aziz, N. Mohamad, S.-B Choi. Material characterization of a magnetorheological fluid subjected to long-term operation in damper. Materials, 11 (11), 2195 (2018).
https://doi.org/10.3390/ma11112195
L. Pei, H. Pang, X. Ruan, X. Gong, S. Xuan. Magnetorheology of a magnetic fluid based on Fe3O4 immobilized SiO2 core-shell nanospheres: Experiments and molecular dynamics simulations. RSC Advances 7 (14), 8142 (2017).
https://doi.org/10.1039/C6RA28436A
V. Chauhan, A. Kumar, N.A. Bhalla, M. Danish, V. Ranjan. Numerical study of shear thickening fluid with distinct particles dispersed in carrier fluid. Vibroengineering PROCEDIA, 21, 242 (2018).
https://doi.org/10.21595/vp.2018.20397
M. Wei, K. Lin, L. Sun. Shear thickening fluids and their applications. Materials & Design 216, 110570 (2022).
https://doi.org/10.1016/j.matdes.2022.110570
G.R. Peng, W. Li, T.F. Tian, J. Ding, M. Nakano. Experimental and modeling study of viscoelastic behaviors of magneto-rheological shear thickening fluids. KoreaAustralia Rheology J. 26 (2), 149 (2014).
https://doi.org/10.1007/s13367-014-0015-3
V. Sokolovski, T. Tian, J. Ding, W. Li. Fabrication and characterisation of magnetorheological shear thickening fluids. Frontiers in Materials 7 (2020).
https://doi.org/10.3389/fmats.2020.595100
C. Liu, J. Xie, D.Cai. Analysis and experimental study on rheological performances of magnetorheological fluids. Mechanics 26 (1), 31 (2020).
https://doi.org/10.5755/j01.mech.26.1.25244
R. Ahamed, M.M. Ferdaus, Y. Li. Advancement in energy harvesting magneto-rheological fluid damper: A review. Korea-Australia Rheology J. 28 (4), 355 (2016).
https://doi.org/10.1007/s13367-016-0035-2
M. Zubieta, S. Eceolaza, M.J. Elejabarrieta, M.M. Bou-Ali. Magnetorheological fluids: characteriztion and modeling of magnetization. Smart Materials and Structures 18 (9), 095019 (2009).
https://doi.org/10.1088/0964-1726/18/9/095019
N.M. Wereley, A. Chaudhuri, J.H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B.J. Love, T.S. Sudarshan. Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. J. Intelligent Material Systems and Structures 17 (5), 393 (2006).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.