Interaction of Oxygen and Gadolinium with Si(100)-2×1 Surface. Formation of a System with 1-eV Work Function

  • M. G. Nakhodkin Taras Shevchenko National University of Kyiv
  • M. I. Fedorchenko Taras Shevchenko National University of Kyiv
Keywords: adsorption, gadolinium, oxygen, Si(100)-2×1 surface, oxidation, work function, dipole layer

Abstract

Changes in the electronic properties of the Si(100) surface, when a multilayer structure of oxidized Gd atoms is created on it, have been studied, by using the electron spectroscopy methods. It is shown that, after a number of adsorption cycles of Gd and oxygen atoms on the Si(100)-2×1 surface at room temperature and the annealing of the obtained structure at 600 ∘C, the work function decreases from 4.8 to less than 1 eV. The work function reduction at larger numbers of processing cycles is shown to be accompanied by the oxidation of Gd and Si atoms and a gradual decrease of the Si concentration in the near-surface region. The obtained results are explained by the formation of an O–Gd dipole layer on the surface.

References

H.D.B. Gottlob, A. Stefani, and M. Schmidt, J. Vac. Sci. Technol. B 27, 258 (2009). https://doi.org/10.1116/1.3025904

J.L. McChesney, A. Kirakosian, R. Bennewitz, J.N. Crain, J.-L. Lin, and F.J. Himpsel, Nanotechn. 13, 545, (2002). https://doi.org/10.1088/0957-4484/13/4/319

J.H.G. Owen, K. Miki, and D.R. Bowler, J. Mater. Sci. 41, 4568 (2006). https://doi.org/10.1007/s10853-006-0246-x

D. Lee, D.K. Lim, S.-S. Bae, S. Kim, R. Ragan, D.A. Ohlberg, Y. Chen, R. Stanley Williams, Appl. Phys. A 80, 1311 (2005). https://doi.org/10.1007/s00339-004-3158-0

E. Morris, J.W. Dikinson, M.L. Willis, and A.A. Baski, in Clusters and Nano-Assemblies. Physical and Biological Systems, edited by P. Jena, S.N. Khanna, and B. K. Rao (World Scientific, Singapore, 2003), p. 175.

H. Zhang, Q. Zhang, G. Zhao, J. Tang, O. Zhou, and L.- C. Qin, Chem. Soc. Comm. 127, 13120 (2005). https://doi.org/10.1021/ja054251p

K. Wandelt and C.R. Brundle, Surf. Sci. 157, 162 (1985). https://doi.org/10.1016/0039-6028(85)90641-7

G. Molnar, G. Peto, and E. Kotai, Vacuum 41, 1640 (1990). https://doi.org/10.1016/0042-207X(90)94041-N

W.A. Henle, M.G. Ramsey, and F.P. Netzer, Vacuum 41, 814 (1990). https://doi.org/10.1016/0042-207X(90)93792-H

W.A. Henle, M.G. Ramsey, F.P. Netzer, R. Cimino, W. Braun, and S. Witzel, Phys. Rev. B 42, 11073 (1990). https://doi.org/10.1103/PhysRevB.42.11073

R. Hofmann and F.P. Netzer, Phys. Rev. B 43, 9720 (1991). https://doi.org/10.1103/PhysRevB.43.9720

W.A. Henle, M.G. Ramsey, F.P. Netzer, R. Cimino, S. Witzel, and W. Braun, Surf. Sci. 243, 141 (1991). https://doi.org/10.1016/0039-6028(91)90353-T

F.P. Netzer, J. Phys.: Condens. Matter 7, 991 (1995). https://doi.org/10.1088/0953-8984/7/6/006

R. Hofmann, W.A. Henle, H. Ofner, M.C. Ramsey, F.P. Netzer, W. Braun, and K. Horn, Phys. Rev. B 47, 10407 (1993). https://doi.org/10.1103/PhysRevB.47.10407

L. Ming, L. Grill, M.G. Ramsey, F.P. Netzer, and J.A.D. Matthew, Surf. Sci. 375, 24 (1997). https://doi.org/10.1016/S0039-6028(96)01247-2

M. Sancrotti, A. Iandelli, G.L. Olcese, and A. Palenzona, Phys. Rev. B 44, 3328 (1991). https://doi.org/10.1103/PhysRevB.44.3328

A.M. Shikin, A.Yu. Grigoriev, G.V. Prudnikova, D.V. Vyalykh, S.L. Molodtsov, and V.K. Adamchuk, Fiz. Tverd. Tela 4, 942 (2000).

J.C. Chen, G.H. Shen, and L.J. Chen, Appl. Surf. Sci. 142, 291 (1999). https://doi.org/10.1016/S0169-4332(98)00639-4

K.B. Chung, Y.K. Choi, M.H. Jang, M. Noh, C.N. Whang, H.K. Jang, and E.J. Jung, J. Vac. Sci. Technol. B 23, 153 (2005). https://doi.org/10.1116/1.1849222

G.L. Molnar, G. Peto, E. Zsoldos, N.Q. Khunh, and Z.E. Hovath, Thin Solid Films 317, 417 (1998). https://doi.org/10.1016/S0040-6090(97)00634-2

B.C. Min, K. Motohashi, C. Lodder, and R. Jansen, Nature Mater. 5, 817 (2006). https://doi.org/10.1038/nmat1736

S. Sugahara, IEE Proc. Circuit Devices Syst. 152, 355 (2005). https://doi.org/10.1049/ip-cds:20045196

A.V. Zenkevich, Yu.U. Matveyev, Yu.Yu. Lebedinskii, R. Mantovan, M. Fanciulli et al., J. Appl. Phys. 111, 506 (2012). https://doi.org/10.1063/1.3672398

M.G. Nakhodkin and M.I. Fedorchenko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 4, 261 (2012).

M.G. Nakhodkin, and M.I. Fedorchenko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 1, 373 (2014).

M.G. Nakhodkin and M.I. Fedorchenko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 3, 323 (2012).

L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Piach, and R.E. Weber, Handbook of Auger Electron Spectroscopy (Physical Electronic Industries, Eden Prairie, Minnesota, 1976).

C.Y. Su, W.E. Spicer, and I. Lindau, J. Appl. Phys. 54, 1413 (1983). https://doi.org/10.1063/1.332166

G. Park, V. Choong, G. Gao, B.R. Hsieh, and C.W. Tang, Appl. Phys. Lett. 68, 2699 (1996). https://doi.org/10.1063/1.116313

Published
2019-01-22
How to Cite
Nakhodkin, M., & Fedorchenko, M. (2019). Interaction of Oxygen and Gadolinium with Si(100)-2×1 Surface. Formation of a System with 1-eV Work Function. Ukrainian Journal of Physics, 60(2), 97. https://doi.org/10.15407/ujpe60.02.0097
Section
Solid matter