Influence of Changes in Defect States on the Properties of Si–Gd–O Photocathode

  • P. V. Mel’nyk Taras Shevchenko National University of Kyiv
  • M. G. Nakhodkin Taras Shevchenko National University of Kyiv
  • M. I. Fedorchenko Taras Shevchenko National University of Kyiv
Keywords: Si, Gd, O, Gd2O3, structural defects, electronic and emission properties


Changes in the electronic and emission properties of a photocathode on the basis of a multilayered structure of oxidized Gd atoms (probably, Gd2O3) on the Si(100) substrate after the deposition of additional layers of Gd atoms onto its surface and the bombardment with Ar ions have been studied by the methods of photoelectron (ℎv = 2.3÷10.2 eV) and Auger electron spectroscopies. The modifications of photocathode properties are found to depend on the defectness of the near-surface photocathode layer, being a result of the change in the concentration of localized electron states located in the energy gap of Gd2O3. It is shown that the bombardment of a Si–Gd–O cathode with Ar ions and its exposition to atomic hydrogen can be used to control its spectral and emission characteristics. A possibility to use the energy diagram proposed by us for the photocathode to qualitatively analyze its properties is confirmed.


R. L. Bell. Negative Electron Affinity Devices. (Clarendon, 1973).

N.A. Soboleva. A new class of electronic emitters. Usp. Fiz. Nauk 111, 331 (1973) (in Russian).

L.N. Dinh, W. McLean, M.A. Schildbach, M. Balooch. Synthesis and characterization of Si/Cs/O nanocluster thin films with negative electron affinity. Phys. Rev. B 59, 15513 (1999).

C.Y. Su, W.E. Spicer, I. Lindau. Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surfaces. J. Appl. Phys. 54, 1413 (1983).

Lihui Guo, Hou Xun. Analysis of photoelectron emission of transmission-mode NEA GaAs photocathodes. J. Phys. D 22, 348 (1989).

L. Diederich, O.M. Kuttel, P. Aebi, L. Schlapbach. Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy. Surf. Sci. 418, 219 (1998).

Zhang Jun-Ju, Chang Ben-Kang, Fu Xiao-Qian, Du YuJie, Li Biao et al. Influence of cesium on the stability of GaAs photocatode. Chin. Phys. B 20, 087902 (2011).

W.A. Henle, M.G. Ramsey, F.P. Netzer,R. Cimino, W. Braun et al. Reactions at the Gd–Si(111)7×7 interface: Promotion of Si oxidation. Phys. Rev. B 42, 11073 (1990).

R. Hofmann, W.A. Henle, H. Ofner, M.G. Ramsey, F.P. Netzer et al. Physical and chemical effects at rareearth-metal SiO2–Si structures. Phys. Rev. B 47, 10407 (1993).

K. Wandelt, C.R. Brundle. The interaction of oxygen with gadolinium: UPS and XPS studies. Surf. Sci. 157, 162 (1985).

R.I.R. Blyth, C. Searle, N. Tucker, R.G. White, T.K. Johal et al. Molecular adsorption on the (0001) surfaces of rareearth metals. Phys. Rev. B 68, 205404 (2003).

M. Cahay, P. Boolchand, S.B. Fairchild, L. Grazulis, P.T. Murray et. al. Review Article: Rare-earth monosulfides as durable and efficient cold cathodes. J. Vac. Sci. Technol. B 29 (6), 06F602 (2011).

O. Erikson, M. Cahay, J.M. Wills. Negative electron affinity material: LaS on InP. Phys. Rev. B 65, 033304 (2001).

M.G. Nakhodkin, M.I. Fedorchenko. Formation of Gd/Si(113) interface. Visn. Kyiv Univ. Ser. Fiz.-Mat. Nauky No. 4, 261 (2012) (in Ukrainian).

M.G. Nakhodkin, M.I. Fedorchenko. Interaction of Gd and O with Si(113) surface. Visn. Kyiv Univ. Ser. Fiz.-Mat. Nauky No. 1, 239 (2014) (in Ukrainian).

M.G. Nakhodkin, M.I. Fedorchenko. Interaction of oxygen and gadolinium with Si(100)2 × 1. Formatiom of a system with a work function of 1 eV. Ukr. J. Phys. 60, 97 (2015).

M.G. Nakhodkin, M.I. Fedorchenko. Photoelectron emission of Si–Gd–O cathode. Ukr. J. Phys. 61, 248 (2016).

Byoung-Chul Min, K. Motohashi, C. Lodder, R. Jansen. Tunable spin-tunnel contacts to silicon using low-workfunction ferromagnets. Nature Mater. 5, 817 (2006).

C.R. Abernathy, B.P. Gila, A.H. Onstine, S.J. Pearton, Jihyun Kim Jour et al. Progress in novel oxides for gate dielectrics and surface passivation of GaN/AlGaN heterostructure field effect transistors. J. Semicond. Technol. Sci. 3, 13 (2003).

W. Farber, P. Braun. Oxygen exposure of Sm, Gd and Tb studied by Auger electron spectroscopy. Surf. Sci. 41, 195 (1974).

P. Morgen, J.H. Onsgaard, S. Tougaard. Observation of changes in the electronic density of states at a Si (111) surface during adsorption of oxygen by Auger electron spectroscopy. Appl. Phys. Lett. 34, 488 (1979).

T.A. Carlson. Photoelectron and Auger Spectroscopy (Plenum Press, 1975) [ISBN: 978-1-4757-0120-3].

J.S. Foord, C.H. Goeting. Diamond electrodes modified by argon ion bombardment. Phys. Status Solidi A 201, 2439 (2004).

R. Pretorius, J.M. Harris and M.A. Nicolet. Reaction of thin metal films with SiO2 substrates. Solid State Electron. 21, 667 (1978)

G. Molnar, G. Peto, E. Kotai, L. Guczi. The oxidation of Gd0.95SiO0.05 layers. Vacuum 41, 1640 (1990).

B.A. Orlowski, B.J. Kowalski, E. Guziewicz, E. Lusakowskaa, V. Osinniyet et al. Microscopic (AFM) and resonant photoemission study of Gd/Si(111) interface. Radiat. Phys. Chem. 78, S22 (2009).

M.V. Nikolic, S.M. Radic, V. Minic, M.M. Ristic. The dependence of the work function of rare earth metals on their electron structure. Microelectron. J. 27, 93 (1996).

Interaction of Ions with Matter [].

R. Berish. Sputtering by Particle Bombardment (Springer, 1981).

How to Cite
Mel’nyk, P., Nakhodkin, M., & Fedorchenko, M. (2018). Influence of Changes in Defect States on the Properties of Si–Gd–O Photocathode. Ukrainian Journal of Physics, 62(8), 692.
Solid matter