Матеріали для оптичних сенсорів рентгенівського опромінювання на основі плівок (GaxIn1 – x)2Se3

Автор(и)

  • M.M. Pop Department of Applied Physics, Faculty of Physics, Uzhhorod National University, Institute of Information Registration Problems, Nat. Acad. of Sci. of Ukraine
  • V.S. Bilanych Department of Applied Physics, Faculty of Physics, Uzhhorod National University
  • V. Komanicky Faculty of Science, Saf´arik University
  • I.I. Nebola Department of Applied Physics, Faculty of Physics, Uzhhorod National University
  • A.M. Solomon Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • P. Kopčanský Institute of Experimental Physics
  • I.P. Studenyak Department of Applied Physics, Faculty of Physics, Uzhhorod National University

DOI:

https://doi.org/10.15407/ujpe67.9.684

Ключові слова:

плiвка, спектральна елiпсометрiя, спектри пропускання, рентгенiвське опромiнення, енергетична псевдощiлина, показник заломлення

Анотація

Плiвки (GaxIn1-x)2Se3 з 0,1 ≤ x ≤ 0,4 осаджено методом термiчного напилення. Дослiджуванi плiвки (GaxIn1-x)2Se3 було опромiнено широкосмуговим випромiнюванням рентгенiвської трубки з мiдним анодом при рiзному часi експозицiї. Методом спектральної елiпсометрiї дослiджено спектральнi залежностi показника заломлення та коефiцiєнта екстинкцiї. Дослiджено спектри оптичного пропускання плiвок (GaxIn1-x)2Se3 пiсля впливу рентгенiвського випромiнювання, залежно вiд часу опромiнення. Визначено параметри урбахiвського краю поглинання для свiжоприготованих та опромiнених плiвок (GaxIn1-x)2Se3. Спектральнi залежностi показника заломлення плiвок (GaxIn1-x)2Se3 проаналiзовано в рамках моделей Кошi, Селмайєра та Уемпла–ДiДомiнiко. Проаналiзовано детальну змiну параметрiв моделi Уемпла–ДiДомiнiко для неопромiнених та опромiнених плiвок (GaxIn1-x)2Se3. Обговорено перспективи використання плiвок (GaxIn1-x)2Se3 як матерiалiв для оптичних сенсорiв рентгенiвського випромiнювання.

Посилання

S. Popovi'c, B. Celustka, ЕЅ. Ruˇzi'c-Toroˇs, D. Broz. X-ray ˇ diffraction study and semiconducting properties of the system Ga2Se3-In2Se3. Phys. Stat. Sol. (a) 41, 255 (1977).

https://doi.org/10.1002/pssa.2210410131

A. Tonejc, S. Popovic, B. Grzeta-Plenkovic. Phases, lattice parameters and thermal expansion of (GaxIn1−x)2Se3, 1 ≥ x ≥ 0, between room temperature and melting point. J. Appl. Cryst. 13, 24 (1980).

https://doi.org/10.1107/S0021889880011454

J. Ye, T. Yoshida, Y. Nakamura, O. Nittono. Realization of giant optical rotatory power for red and infrared light using III2VI3 compound semiconductor (GaxIn1−x)2Se3. Jap. J. Appl. Phys. 35, 4395 (1996).

https://doi.org/10.1143/JJAP.35.4395

M. Kranjˇcec, B. Celustka, B. Etlinger, D. Desnica. The indirect allowed optical transition in (Ga0.3In0.7)2Se3. Phys. Stat. Sol. (a) 109, 329 (1988).

https://doi.org/10.1002/pssa.2211090136

M.Kranjˇcec, D.I. Desnica, B.Celustka, Gy.Sh. Kovacs, ˇ I.P. Studenyak. Fundamental optical absorption edge and compositional disorder in y1-(GaxIn1−x)2Se3 single crystals. Phys. Stat. Sol. (a) 144, 223 (1994).

https://doi.org/10.1002/pssa.2211440125

M. Kranjˇcec, I.P. Studenyak, Yu.M. Azhniuk. Photoluminescence and optical absorption edge in y1-(GaxIn1−x)2Se3 mixed crystals. Phys. Stat. Sol. (b) 238, 439 (2005).

https://doi.org/10.1002/pssb.200540073

J. Ye, T. Yoshida, Y. Nakamura, O. Nittono. Optical activity in the vacancy ordered III2VI3 compound semiconductor (Ga0.3In0.7)2Se3. Appl. Phys. Lett. 67, 3066 (1995).

https://doi.org/10.1063/1.114866

M. Kranjˇcec, I.D. Desnica, B. Celustka, A.N. Borec, ˇ Gy.Sh. Kovacs, Z.P. Hadmashy, L.M. Suslikov, I.P. Studenyak. On some crystal-optic properties of y1-(GaxIn1−x)2Se3 single crystals. Phys. Stat. Sol. (a) 153, 539 (1996).

https://doi.org/10.1002/pssa.2211530229

M. Kranjˇcec, I.P. Studenyak, L.M. Suslikov, Gy.Sh. Kovacs, E. Cerovec. Birefringence in y1-(GaxIn1−x)2Se3 single crystals. Opt. Mat. 25, 307 (2004).

https://doi.org/10.1016/j.optmat.2003.08.005

M. Kranjˇcec, I.D. Desnica, I.P. Studenyak, B. Celustka, ˇ A.N. Borec, I.M. Yurkin, Gy.Sh. Kovacs. Acousto-optic modulator with a (Ga0.4In0.6)2Se3 monocrystal as the active element. Applied Optics 36, 490 (1997).

https://doi.org/10.1364/AO.36.000490

I.P. Studenyak, M. Kranjˇcec, V.Yu. Izai, V.I. Studenyak, M.M. Pop, L.M. Suslikov. Ellipsometric and spectrometric studies of (Ga0.2In0.8)2Se3 thin film. Ukr. Fiz. Zhurn. 65, 231 (2020).

https://doi.org/10.15407/ujpe65.3.231

I.P. Studenyak, M. Kranjˇcec, V.I. Studenyak, V.Yu. Izai, R. Romaniuk, P. Kisala, G. Yusupova, A. Aizhanova. Optical absorption studies of (Ga0.1In0.9)2Se3 thin film. Proc. SPIE 11581, 1158116 (2020).

https://doi.org/10.1117/12.2580582

I.P. Studenyak, M.M. Kranjˇcec, M.M. Pop, V.I. Studenyak, L.M. Suslikov, O.Yu. Pinaeva, P. Komada, S. Luganskaya, M. Kozhamberdiyeva, A. Mussabekova. Optical parameters of (Ga0.4In0.6)2Se3 thin film. Proc. SPIE 11456, 1145605 (2020).

https://doi.org/10.1117/12.2569782

H. Liang, S. Cui, R. Su, P. Guan, Y. He, L. Yang, L. Chen, Y. Zhang, Z. Mei, X. Du. Flexible X-ray detectors based on amorphous Ga2O3 thin films. ACS Photonics 6, 351 (2019).

https://doi.org/10.1021/acsphotonics.8b00769

A.A. Hendi. Determination and analysis the influence of X-ray irradiation on optical constant of magnesium phthalocyanin. Austral. J. Basic and Appl. Sci. 5, 38 (2011).

M.M. El-Nahass, A.H. Ammar, A.A. Atta, A.A.M. Farag, E.F.M. El-Zaidia. Influence of X-ray irradiation on the optical properties of CoMTPP thin films. Optics Communications 284, 2259 (2011).

https://doi.org/10.1016/j.optcom.2010.12.032

A.A. Khodiri, A.M. Nawar, K.M. Abd El-kader. Effect of X-ray irradiation on structural and optical properties of topological insulator bismuth telluride nano-structure thin film. IOSR J. Appl. Phys. 8, 60 (2016).

https://doi.org/10.9790/4861-0804046068

Y. Jung, O.G¨unes., G. Belev, C. Cyril Koughia, R. Johanson, S. Kasap. X-ray induced effects in the optical and thermal properties of a-Se1−xAsx (x = 0, 0.005, 0.06) doped with 0-220 ppm Cs. J. Mater. Sci.: Materials in Electronics 28, 7139 (2017).

https://doi.org/10.1007/s10854-017-6550-1

I.P. Studenyak, M.M. Kutsyk, A.V. Bendak, V.Yu. Izai, P. K'uˇs, M. Mikula. Influence of X-ray irradiation on optical absorption edge and refractive index dispersion in Cu6PS5I-based thin film deposited by magnetron sputtering. Semicond. Phys., Quantum Electron. & Optoelectron. 20, 246 (2017).

https://doi.org/10.15407/spqeo20.02.246

I.P. Studenyak, A.V. Bendak, V.Y. Izai, V.I. Studenyak, A.M. Solomon, P. K'uˇs. Optical absorption and refractive index of X-ray irradiated Cu6PSe5I-based thin film. In: Microstructure and Properties of Micro- and Nanoscale Materials, Films, and Coatings (NAP 2019). Edited by A. Pogrebnjak, O. Bondar. Springer Proceedings in Physics 240, 31 (2020).

https://doi.org/10.1007/978-981-15-1742-6_4

I.P. Studenyak, M.M. Pop, M. Kranjˇcec, A.M. Solomon. Optical studies of X-ray irradiated (Ga0.4In0.6)2Se3 films. Ukr. J. Phys. Opt. 21, 184 (2020).

https://doi.org/10.3116/16091833/21/4/184/2020

R.M.A. Azzam, N.M. Bashara. Ellipsometry and Polarized Light (North-Holland Publishing Company, 1977).

O.S. Heavens. Optical Properties of Thin Solid Films (Dover Publications, 1991).

D. Poelman, P.F. Smet. Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J. Phys. D: Appl. Phys. 36, 1850 (2003).

https://doi.org/10.1088/0022-3727/36/15/316

S.H. Wemple, M. Di Domenico. Behaviour of the dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971).

https://doi.org/10.1103/PhysRevB.3.1338

K. Tanaka. Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films 66, 271 (1980).

https://doi.org/10.1016/0040-6090(80)90381-8

M.S. Tubbs. A spectroscopic interpretation of crystalline ionicity. Phys. Stat. Sol. (b) 41, K61 (1970).

https://doi.org/10.1002/pssb.19700410164

M. Kranjˇcec, I.P. Studenyak, O.T. Nahusko. Spectrometric and ellipsometric studies of (1-x)TiO2xLn2O3 (Ln = Nd, Sm, Gd, Er, Yb) thin films. Non-Cryst. Solids 353, 31 (2007).

https://doi.org/10.1016/j.jnoncrysol.2006.09.018

T.S. Moss. Relation between the refractive index and energy gap of semiconductors. Physica Status Solidi B 131, 415 (1985).

https://doi.org/10.1002/pssb.2221310202

N.M. Ravindra, V.K. Srivastava. Variation of refractive index with energy gap in semiconductors. Infrared Phys. 19, 603 (1979).

https://doi.org/10.1016/0020-0891(79)90081-2

I.P. Studenyak, M. Kranjˇcec, V.I. Studenyak, V.Yu. Izai, R. Romaniuk, P. Kisala, G. Yusupova, A. Aizhanova. Optical absorption studies of (Ga0.1In0.9)2Se3 thin film. Proc. SPIE 11581, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments (2020), p. 1158116.

https://doi.org/10.1117/12.2580582

I.P. Studenyak, M. Kranjˇcec, V.Yu. Izai, V.I. Studenyak, M.M. Pop, L.M. Suslikov. Ellipsometric and spectrometric studies of (Ga0.2In0.8)2Se3 thin film. Ukr. Fiz. Zhurn. 65, 231 (2020).

https://doi.org/10.15407/ujpe65.3.231

I.P. Studenyak, M.M. Kranjˇcec, M.M. Pop, V.I. Studenyak, L.M. Suslikov, O.Yu. Pinaeva, P. Komada, S. Luganskaya, M. Kozhamberdiyeva, A. Mussabekova. Optical parameters of (Ga0.4In0.6)2Se3 thin film. Proc. SPIE 11456, 1145605 (2020).

https://doi.org/10.1117/12.2569782

H. Sumi, A. Sumi. The Urbach-Martienssen rule revisited. J. Phys. Soc. Japan 56, 2211 (1987).

https://doi.org/10.1143/JPSJ.56.2211

H. Sumi, Y. Toyozawa. Urbach-Martienseen rule and exciton trapped momentarily by lattice vibrations. J. Phys. Soc. Japan 31, 342 (1971).

https://doi.org/10.1143/JPSJ.31.342

J.D. Dow, D. Redfield. Toward a unified theory of Urbach's rule and exponential absorption edges. Phys. Rev. B 5, 594 (1972).

https://doi.org/10.1103/PhysRevB.5.594

L. Samuel, Y. Brada, A. Burger, M. Roth. Urbach rule in mixed single crystals of ZnxCd1−xSe. Phys. Rev. B 36, 1168 (1987).

https://doi.org/10.1103/PhysRevB.36.1168

G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein. Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47, 1480 (1981).

https://doi.org/10.1103/PhysRevLett.47.1480

Downloads

Опубліковано

2022-12-21

Як цитувати

Pop, M., Bilanych, V., Komanicky, V., Nebola, I., Solomon, A., Kopčanský, P., & Studenyak, I. (2022). Матеріали для оптичних сенсорів рентгенівського опромінювання на основі плівок (GaxIn1 – x)2Se3. Український фізичний журнал, 67(9), 684. https://doi.org/10.15407/ujpe67.9.684

Номер

Розділ

Напівпровідники і діелектрики

Статті цього автора (авторів), які найбільше читають

1 2 > >>