Modification of Diamagnetic Materials Using Magnetic Fluids

  • I. Safarik Department of Nanobiotechnology, Biology Centre, ISB, CAS, Regional Centre of Advanced Technologies and Materials, Palacky University, Department of Magnetism, Institute of Experimental Physics, SAS
  • J. Prochazkova Department of Nanobiotechnology, Biology Centre, ISB, CAS
  • E. Baldikova Department of Nanobiotechnology, Biology Centre, ISB, CAS
  • M. Timko Department of Magnetism, Institute of Experimental Physics, SAS
  • P. Kopcansky Department of Magnetism, Institute of Experimental Physics, SAS
  • M. Rajnak Department of Magnetism, Institute of Experimental Physics, SAS, Faculty of Electrical Engineering and Informatics, Technical University of Kosice
  • N. Torma Vascular Clinic IMEA
  • K. Pospiskova Regional Centre of Advanced Technologies and Materials, Palacky University
Keywords: magnetic fluids, diamagnetic materials, magnetic modification, magnetic separation

Abstract

Magnetic fluids (ferrofluids) have found many important applications in various areas of biosciences, biotechnology, medicine, and environmental technology. In this review, we have summarized the relevant information dealing with a magnetic modification of diamagnetic materials using different types of ferrofluids. Special attention is focused on a magnetic modification of plant-derived biomaterials, microbial and microalgal cells, eukaryotic cells, biopolymers, inorganic materials, and organic polymers. Derivatization is usually caused by the presence of magnetic iron oxide nanoparticles within the pores of treated materials, on the materials surface or within the polymer gels. The obtained smart materials exhibit several types of responses to an external magnetic field, especially the possibility of the selective magnetic separation from difficult-to-handle environments by means of a magnetic separator. The ferrofluid-modified materials have been especially used as adsorbents, carriers, composite nanozymes or whole-cell biocatalysts.

References

I. Safarik, K. Pospiskova, E. Baldikova, M. Safarikova. Magnetically responsive biological materials and their applications. Adv. Mater. Lett. 7, 254 (2016). https://doi.org/10.5185/amlett.2016.6176

I. Safarik, K. Pospiskova, K. Horska, M. Safarikova. Potential of magnetically responsive (nano)biocomposites. Soft Matter 8, 5407 (2012). https://doi.org/10.1039/c2sm06861c

I. Safarik, K. Pospiskova, K. Horska, Z. Maderova, M. Safarikova. Magnetically responsive (nano)biocomposites. In: Intracellular Delivery. Edited by A. Prokop, Y. Iwasaki, A. Harada (Springer, 2014), Vol. 2. https://doi.org/10.1007/978-94-017-8896-0_2

T. Kanjilal, C. Bhattacharjee. Green applications of magnetic sorbents for environmental remediation. Materials Research Foundations (Organic Pollutants in Wastewater I) 29, 1 (2018). https://doi.org/10.21741/9781945291630-1

R.E. Rosensweig. Ferrohydrodynamics (Dover, 2014) [ISBN: 9780486678344].

S. Odenbach (Ed.) Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (Springer, 2009) [ISBN: 978-3-540-85386-2]. https://doi.org/10.1007/978-3-540-85387-9

O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov, M.V. Avdeev. Small-angle scattering in structural research of nanodiamond dispersions. In: Modern Problems of the Physics of Liquid Systems. Edited by L.A. Bulavin, L. Xu (Springer, 2019). https://doi.org/10.1007/978-3-030-21755-6_8

A. Nagornyi, V.I. Petrenko, M. Rajnak, I.V. Gapon, M.V. Avdeev, B. Dolnik, L.A. Bulavin, P. Kopcansky, M. Timko. Particle assembling induced by nonhomogeneous magnetic field at transformer oil-based ferrofluid/silicon crystal interface by neutron reflectometry. Appl. Surface Sci. 473, 912 (2019). https://doi.org/10.1016/j.apsusc.2018.12.197

A.V. Nagornyi, M.V. Avdeev, O.V. Yelenich, S.O. Solopan, A.G. Belous, A.V. Shulenina, V.A. Turchenko, D.V. Soloviov, L.A. Bulavin, V.L. Aksenov. Structural aspects of Fe3O4/CoFe2O4 magnetic nanoparticles according to X-Ray and neutron scattering. J. Surf. Invest.: X-ray, Synchrotron and Neutron Techniques 12, 737 (2018). https://doi.org/10.1134/S102745101804033X

A. Nagornyi, L. Bulavin, V. Petrenko, M. Avdeev, V. Aksenov. Sensitivity of small-angle neutron scattering method at determining the structural parameters in magnetic fluids with low magnetite concentrations. Ukr. J. Phys. 58, 735 (2013).

L. Meln'ıkov'a, V.I. Petrenko, M.V. Avdeev, V.M. Garamus, L. Alm'asy, O.I. Ivankov, L.A. Bulavin, Z. Mitroova, P. Kopcansky. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS. Colloids Surf. B 123, 82 (2014). https://doi.org/10.1016/j.colsurfb.2014.08.032

V.I. Petrenko, M.V. Avdeev, V.M. Garamus, L.A. Bulavin, P. Kopcansky. Impact of polyethylene glycol on aqueous micellar solutions of sodium oleate studied by small-angle neutron scattering. Colloids Surf. A 480, 191 (2015). https://doi.org/10.1016/j.colsurfa.2014.11.064

S. Bedanta, W. Kleemann. Supermagnetism. J. Phys. D 42, 013001 (2008). https://doi.org/10.1088/0022-3727/42/1/013001

M. Rajnak, Z. Wu, B. Dolnik, K. Paulovicova, J. Tothova, R. Cimbala, J. Kurimsky, P. Kopcansky, B. Sunden, L. Wads¨o, M. Timko. Magnetic field effect on thermal, dielectric, and viscous properties of a transformer oil-based magnetic nanofluid. Energies 12, 4532 (2019). https://doi.org/10.3390/en12234532

M. Rajnak, M. Timko, P. Kopcansky, K. Paulovicova, J. Kuchta, M. Franko, J. Kurimsky, B. Dolnik, R. Cimbala. Transformer oil-based magnetic nanofluid with high dielectric losses tested for cooling of a model transformer. IEEE T. Dielect. El. In. 26, 1343 (2019). https://doi.org/10.1109/TDEI.2019.008047

M. Rajnak, Z. Spitalsky, B. Dolnik, J. Kurimsky, L. Tomco, R. Cimbala, P. Kopcansky, M. Timko. Toward apparent negative permittivity measurement in a magnetic nanofluid with electrically induced clusters. Phys. Rev. Applied 11, 024032 (2019). https://doi.org/10.1103/PhysRevApplied.11.024032

K.K. Narayanasamy, M. Cruz-Acu˜na, C. Rinaldi, J. Everett, J. Dobson, N.D. Telling. Alternating current (AC) susceptibility as a particle-focused probe of coating and clustering behaviour in magnetic nanoparticle suspensions. J. Colloid Interface Sci. 532, 536 (2018). https://doi.org/10.1016/j.jcis.2018.08.014

I. Safarik, P. Lunackova, E. Mosiniewicz-Szablewska, F. Weyda, M. Safarikova. Adsorption of water-soluble organic dyes on ferrofluid-modified sawdust. Holzforschung 61, 247 (2007). https://doi.org/10.1515/HF.2007.060

I. Safarik, M. Safarikova, F. Weyda, E. Mosiniewicz-Szablewska, A. Slawska-Waniewska. Ferrofluid-modified plant-based materials as adsorbents for batch separation of selected biologically active compounds and xenobiotics. J. Magn. Magn. Mater. 293, 371 (2005). https://doi.org/10.1016/j.jmmm.2005.02.033

I. Safarik, M. Safarikova. Magnetic fluid modified peanut husks as an adsorbent for organic dyes removal. Phys. Procedia 9, 274 (2010). https://doi.org/10.1016/j.phpro.2010.11.061

L. Rozumov'a, O. ˇ Zivotsk'y, J. Seidlerov'a, O. Motyka, I. ˇ Safaˇr' ik, M. ˇ Safaˇr' ikov'a. Magnetically modified peanut husks as an effective sorbent of heavy metals. J. Environ. Chem. Eng. 4, 549 (2016). https://doi.org/10.1016/j.jece.2015.10.039

L. Rozumova, J. Seidlerova, I. Safarik. Nanomodified low-cost biological material for the removal of heavy metal ions. In: Advances in Materials Science for Environmental and Energy Technologies V. Edited by T. Ohji, R. Kanakala, J. Matyas, N.J. Manjooran, G. Pickrell, W. Wong-Ng (Wiley, 2016), p. 147-158. https://doi.org/10.1002/9781119323624.ch14

L. Rozumova, J. Seidlerova, I. Safarik, M. Safarikova, M. Cihlarova, R. Gabor. Magnetically modified tea for lead sorption. Adv. Sci. Eng. Med. 6, 473 (2014). https://doi.org/10.1166/asem.2014.1527

K. Pospiskova, I. Safarik. Magnetically modified spent grain as a low-cost, biocompatible and smart carrier for enzyme immobilisation. J. Sci. Food Agr. 93, 598 (2013). https://doi.org/10.1002/jsfa.5930

I. Safarik, K. Horska, M. Safarikova. Magnetically modified spent grain for dye removal. J. Cereal Sci. 53, 78 (2011). https://doi.org/10.1016/j.jcs.2010.09.010

I. Safarik, K. Horska, B. Svobodova, M. Safarikova. Magnetically modified spent coffee grounds for dyes removal. Eur. Food Res. Technol. 234, 345 (2012). https://doi.org/10.1007/s00217-011-1641-3

A. Zuorro, R. Lavecchia, S. Natali. Magnetically modified agro-industrial wastes as efficient and easily recoverable adsorbents for water treatment. Chem. Eng. Trans. 38, 349 (2014).

I. Safarik, K. Horska, K. Pospiskova, M. Safarikova. One-step preparation of magnetically responsive materials from non-magnetic powders. Powder Technol. 229, 285 (2012). https://doi.org/10.1016/j.powtec.2012.06.006

I. Safarik, N. Ashoura, Z. Maderova, K. Pospiskova, E. Baldikova, M. Safarikova. Magnetically modified Posidonia oceanica biomass as an adsorbent for organic dyes removal. Medit. Mar. Sci. 17, 351 (2016). https://doi.org/10.12681/mms.1549

I. Safarik, K. Pospiskova, E. Baldikova, M. Safarikova. Magnetically responsive microbial cells for metal ions removal and detection. In: Handbook of Metal-Microbe Interactions and Bioremediation. Edited by S. Das, H.R. Dash (CRC Press, 2017) [ISBN: 9781498762427], p. 769-778. https://doi.org/10.1201/9781315153353-53

M. Safarikova, Z. Maderova, I. Safarik. Ferrofluid modified Saccharomyces cerevisiae cells for biocatalysis. Food Res. Int. 42, 521 (2009). https://doi.org/10.1016/j.foodres.2009.01.001

R.B. Azevedo, L.P. Silva, A.P.C. Lemos, S.N. Bao, Z.G.M. Lacava, I. Safarik, M. Safarikova, P.C. Morais. Morphological study of Saccharomyces cerevisiae cells treated with magnetic fluid. IEEE Trans. Magn. 39, 2660 (2003). https://doi.org/10.1109/TMAG.2003.815547

I. Safarik, L. Ptackova, M. Safarikova. Adsorption of dyes on magnetically labeled baker's yeast cells. Eur. Cells Mater. 3 (Suppl. 2), 52 (2002).

I. Safarik, L.F.T. Rego, M. Borovska, E. Mosiniewicz-Szablewska, F. Weyda, M. Safarikova. New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme Microb. Technol. 40, 1551 (2007). https://doi.org/10.1016/j.enzmictec.2006.10.034

M. Safarikova, B.M.R. Pona, E. Mosiniewicz-Szablewska, F. Weyda, I. Safarik. Dye adsorption on magnetically modified Chlorella vulgaris cells. Fresenius Environ. Bull. 17, 486 (2008).

I. Safarik, R. Angelova, E. Baldikova, K. Pospiskova, M. Safarikova. Leptothrix sp. sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material. Mater. Sci. Eng. C 71, 1342 (2017). https://doi.org/10.1016/j.msec.2016.10.056

R. Angelova, E. Baldikova, K. Pospiskova, M. Safarikova, I. Safarik. Magnetically modified sheaths of Leptothrix sp. as an adsorbent for Amido black 10B removal. J. Magn. Magn. Mater. 427, 314 (2017). https://doi.org/10.1016/j.jmmm.2016.10.094

M. Safarikova, N. Atanasova, V. Ivanova, F. Weyda, A. Tonkova. Cyclodextrin glucanotransferase synthesis by semicontinuous cultivation of magnetic biocatalysts from cells of Bacillus circulans ATCC 21783. Process Biochem. 42, 1454 (2007). https://doi.org/10.1016/j.procbio.2007.06.009

E. Mosiniewicz-Szablewska, M. Safarikova, I. Safarik. Magnetic studies of ferrofluid-modified microbial cells. J. Nanosci. Nanotechnol. 10, 2531 (2010). https://doi.org/10.1166/jnn.2010.1394

J. Zhao, M. Lin, G. Chen. Facile recycling of Escherichia coli and Saccharomyces cerevisiae cells from suspensions using magnetic modification method and mechanism analysis. Colloids Surf. B 169, 1 (2018). https://doi.org/10.1016/j.colsurfb.2018.05.006

Y.-Q. Ji, Y.-T. Hu, Q. Tian, X.-Z. Shao, J. Li, M. Safarikova, I. Safarik. Biosorption of strontium ions by magnetically modified yeast cells. Sep. Sci. Technol. 45, 1499 (2010). https://doi.org/10.1080/01496391003705664

J. Bai, X. Wu, F. Fan, W. Tian, X. Yin, L. Zhao, F. Fan, Z. Li, L. Tian, Z. Qin, J. Guo. Biosorption of uranium by magnetically modified Rhodotorula glutinis. Enzyme Microb. Technol. 51, 382 (2012). https://doi.org/10.1016/j.enzmictec.2012.08.007

J.P.M.G. Morais, R.B. Azevedo, L.P. Silva, Z.G.M. Lacava, S.N. B'ao, O. Silva, F. Pelegrini, C. Gansau, N. Buske, I. Safarik, M. Safarikova, P.C. Morais. Magnetic resonance investigation of magnetic-labeled baker's yeast cells. J. Magn. Magn. Mater. 272-276, 2400 (2004). https://doi.org/10.1016/j.jmmm.2003.12.998

Q. Wu, Z. Shan, M. Shen, S. Li, H. Chen. Biosorption of direct scarlet dye on magnetically modified Saccharomyces cerevisiae cells. Chin. J. Biotech. 25, 1477 (2009).

L. Uzun, N. Saglam, M. Safarikova, I. Safarik, A. Denizli. Copper biosorption on magnetically modified yeast cells under magnetic field. Sep. Sci. Technol. 46, 1045 (2011). https://doi.org/10.1080/01496395.2010.541400

H. Yavuz, A. Denizli, H. G¨ung¨une¸s, M. Safarikova, I. Safarik. Biosorption of mercury on magnetically modified yeast cells. Sep. Purif. Technol. 52, 253 (2006). https://doi.org/10.1016/j.seppur.2006.05.001

M. Safarikova, L. Ptackova, I. Kibrikova, I. Safarik. Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere 59, 831 (2005). https://doi.org/10.1016/j.chemosphere.2004.10.062

I. Safarik, Z. Maderova, K. Pospiskova, K. Horska, M. Safarikova. Magnetic decoration and labeling of prokaryotic and eukaryotic cells. In: Cell Surface Engineering: Fabrication of Functional Nanoshells. Edited by R.F. Fakhrullin, I. Choi, Y.M. Lvov (RSC, 2014), pp. 185-215. https://doi.org/10.1039/9781782628477-00185

E. Sykova, P. Jendelova. Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord. Neurodegener. Dis. 3, 62 (2006). https://doi.org/10.1159/000092095

P. Jendelova, V. Herynek, L. Urdzikova, K. Glogarova, J. Kroupova, B. Andersson, V. Bryja, M. Burian, M. Hajek, E. Sykova. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J. Neurosci. Res. 76, 232 (2004). https://doi.org/10.1002/jnr.20041

B. Qiu, D. Xie, P. Walczak, X. Li, J. Ruiz-Cabello, S. Minoshima, J.W.M. Bulte, X. Yang. Magnetosonoporation: Instant magnetic labeling of stem cells. Magn. Reson. Med. 63, 1437 (2010). https://doi.org/10.1002/mrm.22348

E. Baldikova, K. Pospiskova, D. Ladakis, I.K. Kookos, A.A. Koutinas, M. Safarikova, I. Safarik. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells. Mater. Sci. Eng. C 71, 214 (2017). https://doi.org/10.1016/j.msec.2016.10.009

X.J. Hu, J.S. Wang, Y.G. Liu, X. Li, G.M. Zeng, Z.L. Bao, X.X. Zeng, A.W. Chen, F. Long. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 185, 306 (2011). https://doi.org/10.1016/j.jhazmat.2010.09.034

O.V. Makarchuk, T.A. Dontsova, I.M. Astrelin. Magnetic nanocomposites as efficient sorption materials for removing dyes from aqueous solutions. Nanoscale Res. Lett. 11, 161 (2016). https://doi.org/10.1186/s11671-016-1364-2

O. Makarchuk, T. Dontsova, A. Perekos, A. Skoblik, Y. Svystunov. Magnetic mineral nanocomposite sorbents for wastewater treatment. J. Nanomater. 2017, Article ID 8579598 (2017). https://doi.org/10.1155/2017/8579598

T.A. Dontsova, E.I. Yanushevskaya, S.V. Nahirniak, O.V. Makarchuk, A.I. Ivanets, M.Y. Roshchina, A.S. Kutuzova, L.M. Kulikov. Directional control of the structural adsorption properties of clays by magnetite modification. J. Nanomater. 2018, Article ID 6573016 (2018). https://doi.org/10.1155/2018/6573016

K. Pospiskova, I. Safarik, M. Sebela, G. Kuncova. Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer. Microchim. Acta 180, 311 (2013). https://doi.org/10.1007/s00604-012-0932-0

J. Prochazkova, K. Pospiskova, I. Safarik. Magnetically modified electrospun nanotextile exhibiting peroxidase-like activity. J. Magn. Magn. Mater. 473, 335 (2019). https://doi.org/10.1016/j.jmmm.2018.10.106

Published
2020-08-26
How to Cite
Safarik, I., Prochazkova, J., Baldikova, E., Timko, M., Kopcansky, P., Rajnak, M., Torma, N., & Pospiskova, K. (2020). Modification of Diamagnetic Materials Using Magnetic Fluids. Ukrainian Journal of Physics, 65(9), 751. https://doi.org/10.15407/ujpe65.9.751
Section
Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)