Influence of Cation Substitution on Ionic and Electronic Conductivity of (Cu1 – xAgx)7GeS5I Mixed Crystals

Authors

  • A.I. Pogodin Uzhhorod National University
  • V.I. Studenyak Uzhhorod National University
  • M.Y. Filep Uzhhorod National University
  • O.P. Kokhan Uzhhorod National University
  • I.P. Studenyak Uzhhorod National University
  • P. Kúš Comenius University

DOI:

https://doi.org/10.15407/ujpe66.4.341

Keywords:

mixed crystals, electrical conductivity, Nyquist plot, activation energy, compositional dependence

Abstract

Impedance measurements of (Cu1−xAgx)7GeS5I mixed crystals are carried out in the frequency range from 10 Hz to 300 kHz and in the temperature interval 292–383 K. The temperature and frequency dependences of the electrical conductivity for (Cu1−xAgx)7GeS5I mixed crystals are studied. Based on the analysis of Nyquist plots and using the electrode equivalent circuits, the values of ionic and electronic components of the electrical conductivity are determined. The compositional behavior of the ionic and electronic conductivities, as well as the compositional behavior of their activation energies, are discussed. The ratio of ionic and electronic components of the conductivity for (Cu1−xAgx)7GeS5I mixed crystals was analyzed.

References

I. Garagounis, V. Kyriakou, C. Anagnostou, V. Bourganis, I. Papachristou, M. Stoukides. Solid electrolytes: Applications in heterogeneous catalysis and chemical cogeneration. Industr. & Engin. Chem. Res. 50, 431 (2011).

https://doi.org/10.1021/ie1001058

J.B. Goodenough, P. Singh. Review - solid electrolytes in rechargeable electrochemical cells. J. Electrochem. Soc. 162, A2387 (2015).

https://doi.org/10.1149/2.0021514jes

F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 389, 198 (2018).

https://doi.org/10.1016/j.jpowsour.2018.04.022

M. Hou, F. Liang, K. Chen, Y. Dai, D. Xue. Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology 31, 132003 (2020).

https://doi.org/10.1088/1361-6528/ab5be7

W.F. Kuhs, R. Nitsche, K. Scheunemann. The argyrodites - a new family of the tetrahedrally close-packed structures. Mater. Res. Bull. 14, 241 (1979).

https://doi.org/10.1016/0025-5408(79)90125-9

T. Nilges, A. Pfi tzner. A structural diff erentiation of quaternary copper argirodites: Structure-property relations of high temperature ion conductors. Z. Kristallogr. 220, 281 (2005).

https://doi.org/10.1524/zkri.220.2.281.59142

I.P. Studenyak, M. Kranj˘cec, M.V. Kurik. Urbach rule and disordering processes in Cu6P(S1−xSex)5Br1−yIy superionic conductors. J. Phys. Chem. Solids 67, 807 (2006).

https://doi.org/10.1016/j.jpcs.2005.10.184

I.P. Studenyak, M. Kranjˇcec, Gy.S. Kovacs, I.D. Desnica-Frankovic, V.V. Panko, V.Yu. Slivka. The excitonic processes and Urbach rule in Cu6P(S1−xSex)5I crystals in the sulfur-rich region. Mat. Res. Bull. 36, 123 (2001).

https://doi.org/10.1016/S0025-5408(01)00508-6

I.P. Studenyak, M. Kranjˇcec, O.A. Mykailo, V.V. Bilanchuk, V.V. Panko, V.V. Tovt. Crystal growth, structural and optical parameters of Cu6PS5(Br1−xIx) superionic conductors. J. Optoelectr. Adv. Mat. 3, 879 (2001).

A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus, I.P. Studenyak, R.Yu. Buchuk, I.P. Prits, V.V. Panko. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics 180, 183 (2009).

https://doi.org/10.1016/j.ssi.2008.12.005

I.P. Studenyak, V.Yu. Izai, V.I. Studenyak, O.V. Kovalchuk, T.M. Kovalchuk, P. Kop˘cansk'y, M. Timko, N. Tomasovicov'a, V. Zavisova, J. Miskuf, I.V. Oleinikova. Influence of Cu6PS5I superionic nanoparticles on the dielectric

properties of 6CB liquid crystal. Liquid Crystals 44, 897 (2017).

https://doi.org/10.1080/02678292.2016.1254288

T. Salkus, E. Kazakevicius, J. Banys, M. Kranjcec, A.A. Chomolyak, Yu.Yu. Neimet, I.P. Studenyak. Influence of grain size eff ect on electrical properties of Cu 6PS5I superionic ceramics. Solid State Ionics 262, 597 (2014).

https://doi.org/10.1016/j.ssi.2013.10.040

I.P. Studenyak, M.Kranj˘cec, V.Yu. Izai, A.A. Chomolyak, M. Vorohta, V. Matolin, C. Cserhati, S. K¨ok'enyesi. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin fi lms. Thin Solid Films 520, 1729 (2012).

https://doi.org/10.1016/j.tsf.2011.08.043

S. Boulineau, M. Courty, J.-M. Tarascon, V. Viallet. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221, 1 (2012).

https://doi.org/10.1016/j.ssi.2012.06.008

S. Yubuchi, S. Teragawa, K. Aso, K. Tadanaga, A. Hayashi, M. Tatsumisago. Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. J. Power Sources 293, 941 (2015).

https://doi.org/10.1016/j.jpowsour.2015.05.093

C. Yu, L. van Eijck, S. Ganapathy, M. Wagemaker. Synthesis, structure and electrochemical performance of the

argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochimica Acta 215, 93 (2016).

https://doi.org/10.1016/j.electacta.2016.08.081

N.C. Rosero-Navarro, T. Kinoshita, A. Miura, M. Higuchi, K. Tadanaga. Eff ect of the binder content on the electrochemical performance of composite cathode using Li6PS5Cl precursor solution in an all-solid-state lithium battery. Ionics 23, 1619 (2017).

https://doi.org/10.1007/s11581-017-2106-x

S. Wenzel, S.J. Seldmaier, C. Dietrich, W.G. Zeier, J. Janek. Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 318, 102 (2018).

https://doi.org/10.1016/j.ssi.2017.07.005

Z. Zhang, L. Zhang, X. Yan, H. Wang, Y. Liu, C. Yu, X. Cao, L. van Eijck, B. Wen. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J. Power Sources 410-411, 162 (2019).

https://doi.org/10.1016/j.jpowsour.2018.11.016

I.P. Studenyak, A.I. Pogodin, V.I. Studenyak, O.P. Kokhan, Yu.M. Azhniuk, C. Cserhati, S. Kokenyesi, D.R.T. Zahn. Synthesis and characterisation of new potassium-containing argyrodite-type compounds. Semicond. Phys., Quantum Electron. & Optoelectron. 22, 26 (2019).

https://doi.org/10.15407/spqeo22.01.026

M. Laqibi, B. Cros, S. Peytavin, M. Ribes. New silver superionic conductors Ag7XY5Z (X = Si, Ge, Sn; Y = S, Se; Z = Cl, Br, I) - synthesis and electrical studies. Solid State Ionics 23, 21 (1987).

https://doi.org/10.1016/0167-2738(87)90077-4

I.P. Studenyak, M. Kranjcec, Gy.Sh. Kovacs, I.D. Desnica-Frankovic, A.A. Molnar, V.V. Panko, V.Yu. Slivka. Electrical and optical absoprtion studies of Cu7GeS5I fast-ion conductor. J. Phys. Chem. Solids 63, 267 (2002).

https://doi.org/10.1016/S0022-3697(01)00139-1

I.P. Studenyak, M. Kranjcec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus. Temperature variation of electrical conductivity and absorption edge in Cu7GeSe5I advanced superionic conductor. J. Phys. Chem. Solids 70, 1478 (2009).

https://doi.org/10.1016/j.jpcs.2009.09.003

I.P. Studenyak, M. Kranjcec, V.V. Bilanchuk, O.P. Kokhan, A.F. Orliukas, A. Kezionis, E. Kazakevicius, T. Salkus. Temperature and compositional behavior of electrical conductivity and optical absorption edge in Cu7Ge(S1−xSex)5I mixed superionic crystals. Solid State Ionics 181, 1596 (2010).

https://doi.org/10.1016/j.ssi.2010.09.021

I.P. Studenyak, A.I. Pogodin, O.P. Kokhan, V. Kavaliuke, T. Salkus, A. Kezionis, A.F. Orliukas. Crystal growth, structural and electrical properties of (Cu1−xAgx)7GeS5I superionic solid solutions. Solid State Ionics 329, 119 (2019).

https://doi.org/10.1016/j.ssi.2018.11.020

I.P. Studenyak, A.I. Pogodin, V.I. Studenyak, V.Yu. Izai, M.J. Filep, O.P. Kokhan, M. Kranjcec, P.K'us. Electrical properties of copper- and silver-containing superionic (Cu1−xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics 345, 115183 (2020). https://doi.org/10.1016/j.ssi.2019.115183

A.R. West. Solid State Chemistry and its Applications Second edition, student edition (John Wiley & Sons, 2014).

I.P. Studenyak, A.I. Pogodin, M.M. Luchynets, V.I. Studenyak, O.P. Kokhan, P. K'u˘s. Impedance studies and electrical conductivity of (Cu1−xAgx)7GeSe5I mixed crystals. J. Alloys and Compounds 817, 152792 (2020). https://doi.org/10.1016/j.jallcom.2019.152792

A.K. Ivanov-Schitz, I.V. Murin. Solid State Ionics (Univ. Press, 2001) (in Russian).

M.E. Orazem, B. Tribollet. Electrochemical Impedance Spectroscopy (John Wiley & Sons, 2008). https://doi.org/10.1002/9780470381588

R.A. Huggins, Simple method to determine electronic and ionic components of the conductivity in mixed conductors: a review. Ionics 8, 300 (2002). https://doi.org/10.1007/BF02376083

Downloads

Published

2021-05-13

How to Cite

Pogodin, A., Studenyak, V., Filep, M., Kokhan, O., Studenyak, I., & Kúš, P. (2021). Influence of Cation Substitution on Ionic and Electronic Conductivity of (Cu1 – xAgx)7GeS5I Mixed Crystals. Ukrainian Journal of Physics, 66(4), 341. https://doi.org/10.15407/ujpe66.4.341

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)