Magnetically Modified Electrospun Nanofibers for Hyperthermia Treatment

  • M. Molcan Department of Magnetism, Institute of Experimental Physics, SAS
  • I. Safarik Department of Magnetism, Institute of Experimental Physics, SAS, Department of Nanobiotechnology, Biology Centre, ISB, CAS, Regional Centre of Advanced Technologies and Materials, Palacky University
  • K. Pospiskova Regional Centre of Advanced Technologies and Materials, Palacky University
  • K. Paulovicova Department of Magnetism, Institute of Experimental Physics, SAS
  • M. Timko Department of Magnetism, Institute of Experimental Physics, SAS
  • P. Kopcansky Department of Magnetism, Institute of Experimental Physics, SAS
  • N. Torma Vascular Clinic IMEA
Keywords: electrospinning, magnetic fluid, polyvinyl butyral, alternating magnetic field, hyperthermia

Abstract

Several methodologies for the preparation of nanofibrous materials exist. Electrospinning is currently the most popular technique due to its versatility and simplicity. Nanofibrous materials prepared in such a way are widely studied in medicine and material engineering. Polyvinyl butyral (PVB) nanofibers were generated by a rod-shaped spinning-electrode. Nanofibers were modified by a magnetic fluid (MF) added into the PVB solution. These magnetic nanofibers can be considered as a material for magnetic hyperthermia applications, either as implants or for the surface heating. The samples with various magnetic particle concentrations were tested in the alternating magnetic field. An immediate increase in the temperature after the field application was observed. The nature of the temperature rise is interesting: a non-linear increase could be seen, which is in contrast to the rising temperature for pure magnetic fluids.

References

I. Savva, T. Krasia-Christoforou. Electrospun magnetoactive fibrous nanocomposites: Fabrication and applications in biomedicine. In: Magnetic Nanoparticles: Synthesis, Physicochemical Properties and Role in Biomedicine. Edited by N.P. Sabba. (Nova Science Publishers, 2014) [ISBN: 978-1-63117-434-6].

T. Blachowicz, A. Ehrmann. Most recent developments in electrospun magnetic nanofibers: A review. J. Eng. Fibers Fabr. 15, in press (2020). https://doi.org/10.1177/1558925019900843

O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov, M.V. Avdeev. Small-angle scattering in structural research of nanodiamond dispersions. In: Modern Problems of the Physics of Liquid Systems. Edited by L.A. Bulavin, L. Xu (Springer, 2019) [ISBN: 978-3-030-21754-9]. https://doi.org/10.1007/978-3-030-21755-6_8

A.V. Nagornyi, M.V. Avdeev, O.V. Yelenich, S.O. Solopan, A.G. Belous, A.V. Shulenina, V.A. Turchenko, D.V. Soloviov, L.A. Bulavin, V.L. Aksenov. Structural aspects of Fe3O4/CoFe2O4 magnetic nanoparticles according to X-ray and neutron scattering. J. Surf. Invest.-X-Ray+ 12, 737 (2018). https://doi.org/10.1134/S102745101804033X

A. Nagornyi, L. Bulavin, V. Petrenko, M. Avdeev, V. Aksenov. Sensitivity of small-angle neutron scattering method at determining the structural parameters in magnetic fluids with low magnetite concentrations. Ukr. J. Phys. 58, 735 (2013).

R. Faridi-Majidi, N. Sharifi-Sanjani. In situ synthesis of iron oxide nanoparticles on poly(ethylene oxide) nanofibers through an electrospinning process. J. Appl. Polym. Sci. 105, 1351 (2007). https://doi.org/10.1002/app.26230

J. Prochazkova, K. Pospiskova, I. Safarik. Magnetically modified electrospun nanotextile exhibiting peroxidase-like activity. J. Magn. Magn. Mater. 473, 335 (2019). https://doi.org/10.1016/j.jmmm.2018.10.106

I. Safarik, K. Pospiskova, E. Baldikova, I. Savva, L. Vekas, O. Marinica, E. Tanasa, T. Krasia-Christoforou. Fabrication and bioapplications of magnetically modified chitosan-based electrospun nanofibers. Electrospinning 2, 29 (2018). https://doi.org/10.1515/esp-2018-0003

T.C. Lin, F.H. Lin, J.C. Lin. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater. 8, 2704 (2012). https://doi.org/10.1016/j.actbio.2012.03.045

P.Y. Hu, Y.T. Zhao, J. Zhang, S.X. Yu, J.S. Yan, X.X. Wang, M.Z. Hu, H.F. Xiang, Y.Z. Long. In situ melt electrospun polycaprolactone/Fe3O4 nanofibers for magnetic hyperthermia. Mater. Sci. Eng. C 110, 110708 (2020). https://doi.org/10.1016/j.msec.2020.110708

S. Chen, S.K. Boda, S.K. Batra, X. Li, J. Xie. Emerging roles of electrospun nanofibers in cancer research. Adv. Healthc. Mater. 7, 1701024 (2018). https://doi.org/10.1002/adhm.201701024

R. Contreras-Caceres, L. Cabeza, G. Perazzoli, A. Diaz, J.M. Lopez-Romero, C. Melguizo, J. Prados. Electrospun nanofibers: Recent applications in drug delivery and cancer therapy. Nanomaterials 9, 656 (2019). https://doi.org/10.3390/nano9040656

C.B. Huang, S.J. Soenen, J. Rejman, J. Trekker, C.X. Liu, L. Lagae, W. Ceelen, C. Wilhelm, J. Demeester, S.C. De Smedt. Magnetic electrospun fibers for cancer therapy. Adv. Funct. Mater. 22, 2479 (2012). https://doi.org/10.1002/adfm.201102171

K. Kaczmarek, R. Mr'owczy'nski, T. Hornowski, R. Bielas, A. J'ozefczak. The effect of tissue-mimicking phantom compressibility on magnetic hyperthermia, Nanomaterials 9 (5), 803 (2019). https://doi.org/10.3390/nano9050803

A. J'ozefczak, B. Leszczy'nski, A. Skumiel, T. Hornowski. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions, J. Magn. Magn. Matter. 407, 92 (2016). https://doi.org/10.1016/j.jmmm.2016.01.054

A. Skumiel, T. Hornowski, A. J'ozefczak, M. Koralewski, B. Leszczy'nski. Uses and limitation of different thermometers for measuring heating efficiency of magnetic fluids, Appl. Therm. Eng. 100, 1308 (2016). https://doi.org/10.1016/j.applthermaleng.2016.02.063

A. Amarjargal, L.D. Tijing, C.-H. Park, I.-T. Im, C.S. Kim. Controlled assembly of superparamagnetic iron oxide nanoparticles on electrospun PU nanofibrous membrane: A novel heat-generating substrate for magnetic hyperthermia application. Eur. Polym. J. 49, 3796 (2013). https://doi.org/10.1016/j.eurpolymj.2013.08.026

Y.-J. Kim, M. Ebara, T. Aoyagi. A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Adv. Funct. Mater. 23, 5753 (2013). https://doi.org/10.1002/adfm.201300746

A.R.K. Sasikala, A.R. Unnithan, Y.-H. Yun, C.H. Park, C.S. Kim. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomater. 31, 122 (2016). https://doi.org/10.1016/j.actbio.2015.12.015

C. Song, X.X. Wang, J. Zhang, G.D. Nie, W.L. Luo, J. Fu, S. Ramakrishna, Y.Z. Long. Electric field-assisted in situ precise deposition of electrospun y-Fe2O3/polyurethane nanofibers for magnetic hyperthermia. Nanoscale Res. Lett. 13, 273 (2018). https://doi.org/10.1186/s11671-018-2707-y

L. Polakova, J. Sirc, R. Hobzova, A.I. Cocar¸ta, E. Hermankova. Electrospun nanofibers for local anticancer therapy: Review of in vivo activity. Int. J. Pharm. 558, 268 (2019). https://doi.org/10.1016/j.ijpharm.2018.12.059

F. Yener, B. Yalcinkaya. Electrospinning of polyvinyl butyral in different solvents. e-Polymers 13, 021 (2013). https://doi.org/10.1515/epoly-2013-0121

P. Pokorny, E. Kostakova, F. Sanetrnik, P. Mikes, J. Chvojka, T. Kalous, M. Bilek, K. Pejchar, J. Valtera, D. Lukas. Effective AC needleless and collectorless electrospinning for yarn production. Phys. Chem. Chem. Phys. 16, 26816 (2014). https://doi.org/10.1039/C4CP04346D

L. Vekas, D. Bica, M.V. Avdeev. Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications. China Particuol. 5, 43 (2017). https://doi.org/10.1016/j.cpart.2007.01.015

M. Rajnak, Z. Wu, B. Dolnik, K. Paulovicova, J. Tothova, R. Cimbala, J. Kurimsky, P. Kopcansky, B. Sunden, L. Wadso, M. Timko. Magnetic field effect on thermal, dielectric, and viscous properties of a transformer oil-based magnetic nanofluid. Energies 12, 4532 (2019). https://doi.org/10.3390/en12234532

S. Odenbach. Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (Springer, 2009) [ISBN: 978-3-540-85386-2]. https://doi.org/10.1007/978-3-540-85387-9

M. Rajnak, Z. Spitalsky, B. Dolnik, J. Kurimsky, L. Tomco, R. Cimbala, P. Kopcansky, M. Timko. Toward apparent negative permittivity measurement in a magnetic nanofluid with electrically induced clusters. Phys. Rev. Applied 11, 024032 (2019). https://doi.org/10.1103/PhysRevApplied.11.024032

W. Chen, S. Morup, M.F. Hansen, T. Banert, U.A. Peuker. A Mossbauer study of the chemical stability of iron oxide nanoparticles in PMMA and PVB beads. J. Magn. Magn. Mater. 320, 2099 (2008). https://doi.org/10.1016/j.jmmm.2008.03.031

D. Posavec, A. Dorsch, U. Bogner, G. Bernhardt, S. Nagl. Polyvinyl butyral nanobeads: preparation, characterization, biocompatibility and cancer cell uptake. Microchim. Acta 173, 391 (2011). https://doi.org/10.1007/s00604-011-0573-8

S. Dutz, R. Hergt. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy, Int. J. Hyperthermia 29, 790 (2013). https://doi.org/10.3109/02656736.2013.822993

M. Babiˇc, D. Hor'ak, M. Molˇcan, M. Timko. Heat generation of surface-modified magnetic y-Fe2O3 nanoparticles in applied alternating magnetic field. J. Phys. D 50 (34), Article No. 345002 (2017). https://doi.org/10.1088/1361-6463/aa7bcb

Published
2020-07-30
How to Cite
Molcan, M., Safarik, I., Pospiskova, K., Paulovicova, K., Timko, M., Kopcansky, P., & Torma, N. (2020). Magnetically Modified Electrospun Nanofibers for Hyperthermia Treatment. Ukrainian Journal of Physics, 65(8), 655. https://doi.org/10.15407/ujpe65.8.655
Section
Physics of liquids and liquid systems, biophysics and medical physics