Electrical Conductivity and Thermoelectrical Parameters of Argyrodite-Type Cu7 – xPS6 – xIx Mixed Crystals

Authors

  • A.I. Pogodin Uzhhorod National University
  • M.M. Luchynets Uzhhorod National University
  • M.Y. Filep Uzhhorod National University
  • A.A. Kohutych Uzhhorod National University
  • T.O. Malakhovska Uzhhorod National University
  • O.P. Kokhan Uzhhorod National University
  • M.Yu. Sabov Uzhhorod National University
  • I.P. Studenyak Uzhhorod National University
  • P. Kúš Comenius University

DOI:

https://doi.org/10.15407/ujpe66.2.159

Keywords:

mixed crystals, electrical conductivity, activation energy, Seebeck coefficient, power factor, compositional dependence

Abstract

Cu7−xPS6−xIx mixed crystals were grown by the direct crystallization from a melt. The electrical conductivity is measured in the frequency range from 10 Hz to 300 kHz and in the temperature interval 293–383 K. The frequency, temperature, and compositional dependences of the electrical conductivity for Cu7−xPS6−xIx mixed crystals are studied. The measurements of thermoelectric parameters of Cu7−xPS6−xIx mixed crystals are carried out in the temperature interval 293–383 K. The compositional behaviors of the electrical conductivity, activation energy, Seebeck coefficient, and power factor are investigated. The interrelation between the structural, electrical, and thermoelectrical properties is analyzed.

References

W.F. Kuhs, R. Nitsche, K. Scheunemann. The argyrodites - a new family of the tetrahedrally close-packed structures. Mater. Res. Bull. 14, 241 (1979).

https://doi.org/10.1016/0025-5408(79)90125-9

T. Nilges, A. Pfitzner. A structural differentiation of quaternary copper argirodites: Structure-property relations of

high temperature ion conductors. Z. Kristallogr. 220, 281 (2005).

I.P. Studenyak, M. Kranj˘cec, M.V. Kurik. Urbach rule and disordering processes in Cu6P(S1−xSex)5Br1−yIy superionic conductors. J. Phys. Chem. Solids 67, 807 (2006).

https://doi.org/10.1016/j.jpcs.2005.10.184

I.P. Studenyak, M. Kranj˘cec, Gy.Sh. Kovacs, V.V. Panko, V.V. Mitrovcij, O.A. Mikajlo. Structural disordering studies in Cu6+бPS5I single crystals. Mat. Sci. & Engin. B 97, 34 (2003).

https://doi.org/10.1016/S0921-5107(02)00392-6

Studenyak, M. Kranj˘cec, Gy.S. Kovacs, I.D. Desnica-Frankovic, V.V. Panko, V.Yu. Slivka.The excitonic processes and Urbach rule in Cu6P(S1−xSex)5I crystals in the sulfur-rich region.Mat. Res. Bull. 36, 123 (2001).

https://doi.org/10.1016/S0025-5408(01)00508-6

I.P. Studenyak, M. Kranj˘cec, O.A. Mykailo, V.V. Bilanchuk, V.V. Panko, V.V. Tovt. Crystal growth, structural and optical parameters of Cu6PS5(Br1−xIx) superionic conductors. J. Optoelectr. Adv. Mat. 3, 879 (2001).

A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus, I.P. Studenyak, R.Yu. Buchuk, I.P. Prits, V.V. Panko. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites. Solid State Ionics 180, 183 (2009).

https://doi.org/10.1016/j.ssi.2008.12.005

I.P. Studenyak, V.Yu. Izai, V.I. Studenyak, O.V. Kovalchuk, T.M. Kovalchuk, P. Kopcansk'y, M. Timko, N. Tomasovicov'a, V. Zavisova, J. Miskuf, I.V. Oleinikova. Influence of Cu6PS5I superionic nanoparticles on the dielectric properties of 6CB liquid crystal. Liquid Crystals 44, 897 (2017).

https://doi.org/10.1080/02678292.2016.1254288

T. Salkus, E. Kazakevicius, J. Banys, M. Kranjcec, A.A. Chomolyak, Yu.Yu. Neimet, I.P. Studenyak. Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics. Solid State Ionics 262, 597 (2014).

https://doi.org/10.1016/j.ssi.2013.10.040

I.P. Studenyak, M.Kranj˘cec, V.Yu. Izai, A.A. Chomolyak, M. Vorohta, V. Matolin, C. Cserhati, S. K¨ok'enyesi. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin films. Thin Solid Films 520, 1729 (2012).

https://doi.org/10.1016/j.tsf.2011.08.043

X. Shi, L. Chen. Thermoelectric materials step up. Nature Mater. 15, 691 (2016).

https://doi.org/10.1038/nmat4643

L.E. Bell. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008).

https://doi.org/10.1126/science.1158899

J. Yang , L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, D.J. Singh. On the tuning of electrical and thermal transport in thermoelectrics: An integrated theory - experiment perspective. Computational Materials 2, 15015 (2016).

https://doi.org/10.1038/npjcompumats.2015.15

K.B. Masood, P. Kumar, R.A. Singh, J. Singh. Odyssey of thermoelectric materials: foundation of the complex structure. J. Phys. Commun. 2, 062001 (2018).

https://doi.org/10.1088/2399-6528/aab64f

M. Beekman, D. Morelli, G. Nolas. Better thermoelectrics through glass-like crystals. Nature Mater. 14, 1182 (2015).

https://doi.org/10.1038/nmat4461

K.S. Weldert, W.G. Zeier, T.W. Day, M. Panth¨ofer, G.J. Snyder, W. Tremel. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. J. Am. Chem. Soc. 136, 12035 (2014).

https://doi.org/10.1021/ja5056092

B. Jiang, P. Qiu, E. Eikeland, H. Chen, Q. Song, D. Ren, T. Zhang, J. Yang, B. Brummerstedt Iversen, X. Shi, L. Chen. Cu8GeSe6-based thermoelectric materials with an argyrodite structure. J. Mater. Chem. C 5, 943 (2017).

https://doi.org/10.1039/C6TC05068A

X. Shen, C.C. Yang, Y. Liu, G. Wang, H. Tan, Y.H. Tung, G. Wang, X. Lu, J. He, X. Zhou. High-temperature structural and thermoelectric study of argyrodite Ag8GeSe6. ACS Appl. Mater. Interfaces 11, 2168 (2019).

https://doi.org/10.1021/acsami.8b19819

X. Qi, J. Chen, K. Guo, S. He, J.Yang, Z. Li, J. Xing, J. Hu, H. Luo, W. Zhang, J. Luo. Thermal stability of Ag9GaSe6 and its potential as a functionally graded thermoelectric material. Chem. Engin. J. 374, 494 (2019).

https://doi.org/10.1016/j.cej.2019.05.179

R. Chen, P. Qiu, B. Jiang, P. Hu, Y. Zhang, J. Yang, D. Ren, X. Shia, L. Chen. Significantly optimized thermoelectric properties in high-symmetry cubic Cu7PSe6 compounds via entropy engineering. J. Mater. Chem. A 6, 6493 (2018).

https://doi.org/10.1039/C8TA00631H

F. Reissig, B. Heep, M. Panth' 'ofer, M. Wood, S. Anand, G.J. Snyder, W. Tremel. Effect of anion substitution on the structural and transport properties of argyrodites Cu7PSe6−xSx. Dalton Trans. 48, 15822 (2019).

https://doi.org/10.1039/C9DT03247A

S. Schwarzm¨uller, D. Souchay, D. G¨unther, A. Gocke, I. Dovgaliuk, S.A. Miller, G.J. Snyder, O. Oeckler. Argyrodite-type Cu8GeSe6−xTex (0 < x < 2): Temperature-dependent crystal structure and thermoelectric properties. Z. Anorg. Allg. Chem. 644, 1915 (2018).

https://doi.org/10.1002/zaac.201800453

W. Li, S. Lin, B. Ge, J. Yang, W. Zhang, Y. Pei. Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6. Adv. Sci. 3, 1600196 (2016).

https://doi.org/10.1002/advs.201600196

I.P. Studenyak, M.M. Luchynets, V.Yu. Izai, A.I. Pogodin, O.P. Kokhan, Yu.M. Azhniuk, D.R.T. Zahn. Structure and

Raman spectra of (Cu6PS5I)1−x(Cu7PS6)x mixed crystals. Semiconductor Physics, Quantum Electronics & Optoelectronics 20, 396 (2017).

https://doi.org/10.15407/spqeo20.03.369

I.P. Studenyak, V.Yu. Izai, A.I. Pogodin, O.P. Kokhan, V.I. Sidey, M.Yu. Sabov, A. Ke˘zionis, T. Salkus, J. Banys. Structural and electrical properties of argyrodite-type Cu7PS6 crystal. Lit. J. Phys. 57, 243 (2017).

https://doi.org/10.3952/physics.v57i4.3603

K. Momma, F. Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

https://doi.org/10.1107/S0021889811038970

A.I. Pogodin, M.J. Filep, T.O. Malakhovska, M.Yu. Sabov, V.I. Sidey, O.P. Kokhan, I.P. Studenyak. The copper argyrodites Cu7−nPS6−nBrn: Crystal growth, structures and ionic conductivity. Solid State Ionics 341, 115023 (2019).

https://doi.org/10.1016/j.ssi.2019.115023

L.L. Zhao, X.-L. Wang, J.Y. Wang, Z.X. Cheng, S.X. Dou, J.Wang, L.Q. Liu. Superior intrinsic thermoelectric performance with ZT of 1.8 in single-crystal and melt-quenched highly dense Cu2−xSe bulks. Sci. Reports 5, 7671 (2015).

https://doi.org/10.1038/srep07671

Y. Yao, B.-P. Zhang, J. Pei, Y.-C. Liu, J.-F. Li. Thermoelectric performance enhancement of Cu2S by Se doping leading to a simultaneous power factor increase and thermal conductivity reduction. J. Mater. Chem. C 5, 7845 (2017).

https://doi.org/10.1039/C7TC01937H

Downloads

Published

2021-03-04

How to Cite

Pogodin, A., Luchynets, M., Filep, M., Kohutych, A., Malakhovska, T., Kokhan, O., Sabov, M., Studenyak, I., & Kúš, P. (2021). Electrical Conductivity and Thermoelectrical Parameters of Argyrodite-Type Cu7 – xPS6 – xIx Mixed Crystals. Ukrainian Journal of Physics, 66(2), 159. https://doi.org/10.15407/ujpe66.2.159

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)