Development of Neutron Reflectometry of Surface Layers of Liquid Systems

Authors

  • Y. Kosiachkin Physics Department, Taras Shevchenko National University of Kyiv
  • L.A. Bulavin Physics Department, Taras Shevchenko National University of Kyiv
  • P. Kopcansky Institute of Experimental Physics Slovak Academy of Science

DOI:

https://doi.org/10.15407/ujpe68.4.259

Keywords:

thin films, multilayered structures, neutron reflectometry, X-ray reflectometry, electrochemical interfaces, signal optimization

Abstract

In order to develop the methods of neutron and X-ray reflectometries for the study of surface layers of liquid systems, a method of increasing the sensitivity of the reflectometric experiment to the appearance and evolution of near-surface layers is proposed. Therefore, Ni/Ti multilayered heterostructures are tested regarding for the practical applicability of the quasi-homogeneous approach with varying effective scattering length density of thin (thickness <100 nm) metal films in X-ray reflectometry experiments on the example of electrochemical interfaces. The structures with extremely low thickness of the Ni/Ti bilayer with different thickness ratios of Ni- and Ti-sublayers are synthesized by magnetron sputtering. Specular reflectivities of X-rays from the heterostructures are analyzed to conclude about the limits of the quasi-homogeneous approximation.

References

V.I. Petrenko, M.V. Avdeev, L. Almasy, L.A. Bulavin, V.L. Aksenov, L. Rosta, V.M. Garamus. Interaction of mono-carboxylic acids in benzene studied by small-angle neutron scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects 337 (1-3), 91 (2009).

https://doi.org/10.1016/j.colsurfa.2008.12.001

O.A. Kyzyma, T. Kyrey, M.V. Avdeev, M.V. Korobov, L.A. Bulavin, V.L. Aksenov. Nonreversible solvatochromism in N-methyl-2-pyrrolidone/toluene mixed solutions of fullerene C60. Chem. Phys. Lett. 556, 178 (2013).

https://doi.org/10.1016/j.cplett.2012.11.040

L. Melnikova, V.I. Petrenko, M.V. Avdeev, V.M. Garamus, L. Almasy, O.I. Ivankov, L.A. Bulavin, Z. Mitroova, P. Kopcansky. Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS Colloids and Surfaces B: Biointerfaces 123, 82 (2014).

https://doi.org/10.1016/j.colsurfb.2014.08.032

O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov, V.M. Garamus, O.I. Ivankov, A.Y. Vul, A.T. Dideikin, M.V. Avdeev. Small-angle scattering from polydisperse particles with a diffusive surface. J. Applied Crystallography 47, 642 (2014).

https://doi.org/10.1107/S1600576714001216

V.I. Petrenko, O.P. Artykulnyi, L.A. Bulavin, L. Almasy, V.M. Garamus, O.I. Ivankov, N.A. Grigoryeva, L. Vekas, P. Kopcansky, M.V. Avdeev. On the impact of surfactant type on the structure of aqueous ferrofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 541, 222 (2018).

https://doi.org/10.1016/j.colsurfa.2017.03.054

J. Penfold, R.K. Thomas, H.H. Shen. Adsorption and selfassembly of biosurfactants studied by neutron reflectivity and small angle neutron scattering: Glycolipids, lipopeptides and proteins. Soft Matter 8, 578 (2012).

https://doi.org/10.1039/C1SM06304A

J. Penfold, R.K. Thomas. Neutron reflectivity and small angle neutron scattering: An introduction and perspective on recent progress. Curr. Opin. Coll. Interface Sci. 19, 198 (2014).

https://doi.org/10.1016/j.cocis.2014.01.002

G. Fragneto. Neutrons and model membranes. Eur. Phys. J. Spec. Top. 213, 327 (2012).

https://doi.org/10.1140/epjst/e2012-01680-5

A. Junghans, E.B. Watkins, R.D. Barker, S. Singh, M.J. Waltman, H.L. Smith, L. Pocivavsek, J. Majewski. Analysis of biosurfaces by neutron reflectometry: From simple to complex interfaces. Biointerphases 10, 019014 (2015).

https://doi.org/10.1116/1.4914948

Y. Gerelli. Applications of neutron reflectometry in biology. EPJ Web of Conferences 236, 04002 (2020).

https://doi.org/10.1051/epjconf/202023604002

A.J. Armstrong, T.M. McCoy, R.J.L. Welbourn, R. Barker, J.L. Rawle, B. Cattoz, P.J. Dowding, A.F. Routh. Towards a neutron and X-ray reflectometry environment for the study of solid-liquid interfaces under shear. Scientific Rep. 11, 1 (2021).

https://doi.org/10.1038/s41598-021-89189-1

W.L. Chen, R. Cordero, H. Tran, C.K. Ober. 50th anniversary perspective: Polymer brushes: novel surfaces for future materials. Macromolecules 50, 4089 (2017).

https://doi.org/10.1021/acs.macromol.7b00450

V.I. Petrenko, Ye.N. Kosiachkin, L.A. Bulavin, M.V. Avdeev. Optimization of the initial interface configuration for in-situ neutron reflectometry experiments. J. Surf. Investigation 14, 215 (2020).

https://doi.org/10.1134/S1027451020020329

D.M. Itkis, J.J Velasco-Velez, A. Knop-Gericke, A. Vyalikh, M.V. Avdeev, L.V. Yashina. Probing of electrochemical interfaces by photons and neutrons in operando. ChemElectroChem 2, 1427 (2015).

https://doi.org/10.1002/celc.201500155

J.A. Dura, E.D. Rus, P.A. Kienzle, B.B Maranville. Nanolayer analysis by neutron reflectometry. Nanolayer Research, 155 (2017).

https://doi.org/10.1016/B978-0-444-63739-0.00005-0

M.V. Avdeev, I.A. Bobrikov, V.I. Petrenko. Neutron methods for tracking lithium in operating electrodes and interfaces. Phys. Sci. Rev. 3, 20170157 (2018).

https://doi.org/10.1515/psr-2017-0157

E.D. Rus, J.A. Dura. In situ neutron reflectometry study of solid electrolyte interface (sei) formation on tungsten thinfilm electrodes.ACS Appl. Mater. Interfaces 11, 47553 (2019).

https://doi.org/10.1021/acsami.9b16592

C.H. Lee, J.A. Dura, A. LeBar, S.C. DeCaluwe. Direct, operando observation of the bilayer solid electrolyte interphase structure: Electrolyte reduction on a nonintercalating electrode. J. Power Sources 412, 725 (2019).

https://doi.org/10.1016/j.jpowsour.2018.11.093

M.V. Avdeev, A.A. Rulev, E.E. Ushakova, Ye.N. Kosiachkin, V.I. Petrenko, I.V. Gapon, E.Yu. Kataev, V.A. Matveev, L.V. Yashina, D.M. Itkis. On nanoscale structure of planar electrochemical interfaces metal/liquid lithium ion electrolyte by neutron reflectometry. Appl. Surf. Sci. 486, 287 (2019).

https://doi.org/10.1016/j.apsusc.2019.04.241

Y.N. Kosiachkin, I.V. Gapon, A.A. Rulev, E.E. Ushakova, D. Merkel, L.A. Bulavin, M.V. Avdeev, D.M. Itkis. Structural studies of electrochemical interfaces with liquid electrolytes using neutron reflectometry: Experimental aspects. J. Surf. Investigation 15(4), 787 (2021).

https://doi.org/10.1134/S1027451021040285

M.V. Avdeev, A.A. Rulev, V.I. Bodnarchuk, E.E. Ushakova, V.I. Petrenko, I.V. Gapon, O.V. Tomchuk, V.A. Matveev, N.K. Pleshanov, E.Yu. Kataev, L.V. Yashina, D.M. Itkis. Monitoring of lithium plating by neutron reflectometry. Appl. Surf. Sci. 424, 378 (2017).

https://doi.org/10.1016/j.apsusc.2017.01.290

V.I. Petrenko, Ye.N. Kosiachkin, L.A. Bulavin, M.V. Avdeev. On enhancement of the adsorption-layer effect at the metallic electrode? Liquid electrolyte interface in specular neutron reflectometry experiments. J. Surf. Investigation 12(4), 651 (2018).

https://doi.org/10.1134/S1027451018040158

T. Veres, L. Cser, V. Bodnarchuk, V. Ignatovich, Z.E. Horvath, B. Nagy. Investigation of periodic Ni-Ti multilayers. Thin Solid Films 540, 69 (2013).

https://doi.org/10.1016/j.tsf.2013.06.001

N.S. Yadavalli, D. Korolkov, J.F. Moulin, M. Krutyeva, S. Santer. Probing opto-mechanical stresses within azobenzene-containing photosensitive polymer films by a thin metal film placed above. ACS Appl. Mater. Interfaces 6, 11333 (2014).

https://doi.org/10.1021/am501870t

C.K. Kalonia, F. Heinrich, J.E. Curtis, S. Raman, M.A. Miller, S.D. Hudson. Protein adsorption and layer formation at the stainless steel - solution interface mediates shear-induced particle formation for an IgG1 monoclonal antibody. Molecular Pharmaceutics 15, 1319 (2018).

https://doi.org/10.1021/acs.molpharmaceut.7b01127

M.H. Wood, S.M. Clarke. Neutron reflectometry for studying corrosion and corrosion inhibition. Metals 7, 304 (2017).

https://doi.org/10.3390/met7080304

P. Hrubovcak, E. Dushanov, T. Kondela, O. Tomchuk, Kh. Kholmurodov, N. Kucerka. Reflectometry and molecular dynamics study of the impact of cholesterol and melatonin on model lipid membranes. Europ. Biophys. J. 50, 1025 (2021).

https://doi.org/10.1007/s00249-021-01564-y

R. Kovacs-Mezei, Th. Krist, Zs. Revay. Non-magnetic supermirrors produced at Mirrotron Ltd. Nucl. Instr. Methods A 586(1), 51 (2008).

https://doi.org/10.1016/j.nima.2007.11.034

A. Nelson. Co-refinement of multiple-contrast neutron/Xray reflectivity data using MOTOFIT. J. Appl. Cryst. 39, 273 (2006).

https://doi.org/10.1107/S0021889806005073

I. Carron, V. Ignatovich. Algorithm for preparation of multilayer systems with high critical angle of total reflection. Phys. Rev. A 67, 043610 (2003).

https://doi.org/10.1103/PhysRevA.67.043610

H. Frielinghaus, M. Gvaramia, G. Mangiapia, S. Jaksch, M. Ganeva, A. Koutsioubas, S. Mattauch, M. Ohl, M. Monkenbusch, O. Holderer. New tools for grazing incidence neutron scattering experiments open perspectives to study nano-scale tribology mechanisms. Nucl. Instr. Meth. A 871, 72 (2017).

https://doi.org/10.1016/j.nima.2017.07.064

R. Maruyama, T. Bigault, T. Saerbeck, D. Honecker, K. Soyama, P. Courtois. Coherent magnetization rotation of a layered system observed by polarized neutron scattering under grazing incidence geometry. Crystals 9, 383 (2019).

https://doi.org/10.3390/cryst9080383

Published

2023-06-14

How to Cite

Kosiachkin, Y., Bulavin, L., & Kopcansky, P. (2023). Development of Neutron Reflectometry of Surface Layers of Liquid Systems. Ukrainian Journal of Physics, 68(4), 259. https://doi.org/10.15407/ujpe68.4.259

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

1 2 3 4 5 > >>