Structure and Electrical Properties of Superionic Ceramics Based on Silver-Enriched (Cu0.25Ag0.75)7SiS5I Solid Solution

Authors

  • A.I. Pogodin Uzhhorod National University
  • I.O. Shender Uzhhorod National University
  • S.M. Bereznyuk Uzhhorod National University
  • M.Y. Filep Uzhhorod National University
  • O.P. Kokhan Uzhhorod National University
  • L.M. Suslikov Uzhhorod National University
  • I.P. Studenyak Uzhhorod National University

DOI:

https://doi.org/10.15407/ujpe66.6.489

Keywords:

argyrodite, superionic conductor, ceramic, ionic conductivity, activation energy

Abstract

(Cu0.25Ag0.75)7SiS5I-based superionic ceramics were fabricated by using the micro- and nanopowders. The XRD technique and microstructural analysis are applied for the structural studies of powders and ceramic samples. The impedance measurements of ceramic samples are carried out in the frequency range from 10Hz to 2 × 106 Hz and temperature interval from 292 K to 383 K. The contributions of ionic and electronic conductivities into the total electrical conductivity are determined, and their temperature dependences are investigated. The influence of the size effect on ionic and electronic conductivities and their activation energies in (Cu0.25Ag0.75)7SiS5I-based ceramics is studied.

References

M. Bengisu. Applications of ceramic materials. In: Engineering Ceramics. Engineering Materials (Springer, 2001), p. 407-446 [ISBN: 978-3-642-08719-6, 978-3-662-04350-9].

https://doi.org/10.1007/978-3-662-04350-9_6

M. Vallet-Reg'i. Ceramics for medical applications. J. Chem. Soc., Dalton Trans. 2, 97 (2001).

https://doi.org/10.1039/b007852m

Z. Xiao,S. Yu, Y. Li, S. Ruan, L.B. Kong, Q. Huang, Z. Huang, K. Zhou, H. Su, Z. Yao, W. Que, Y. Liu, T. Zhang, J. Wang, P. Liu, D. Shen, M. Allix, J. Zhang, D. Tang. Materials development and potential applications of transparent ceramics: A review. Mater. Sci. Engin.: R: Reports 139, 100518 (2020).

https://doi.org/10.1016/j.mser.2019.100518

R.-Z. Zhang, M.J. Reece. Review of high entropy ceramics: Design, synthesis, structure and properties. J. Mater. Chem. A 7, 22148 (2019).

https://doi.org/10.1039/C9TA05698J

X. Hao. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3 (1), 1330001 (2013).

https://doi.org/10.1142/S2010135X13300016

V. Fernao Pires, E. Romero-Cadaval, D. Vinnikov, I. Roasto, J.F. Martins. Power converter interfaces for electro-chemical energy storage systems - A review. Energy Conversion and Management 86, 453 (2014).

https://doi.org/10.1016/j.enconman.2014.05.003

Z. Wu, Z. Xie, A. Yoshida, Z. Wang, X. Hao, A. Abudula, G. Guan. Utmost limits of various solid electrolytes in all-

solid-state lithium batteries: A critical review. Renewable and Sustainable Energy Reviews 109, 367 (2019).

https://doi.org/10.1016/j.rser.2019.04.035

J.B. Goodenough, K.-S. Park. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135 (4), 1167 (2013).

https://doi.org/10.1021/ja3091438

J. Wen, Y. Yu, C. Chen. A review on lithium-ion batteries safety issues: Existing problems and possible solutions. Mater. Express 2, 197 (2012).

https://doi.org/10.1166/mex.2012.1075

J.W. Fergus. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554 (2010).

https://doi.org/10.1016/j.jpowsour.2010.01.076

Z. Zhang, Q. Zhang, C. Ren, F. Luo, Q. Ma, Y.-S. Hu, Z. Zhou, H. Li, X.H., L. Chen. A ceramic/polymer composite solid electrolyte for sodium batteries. J. Mater. Chem. A 4, 15823 (2016).

https://doi.org/10.1039/C6TA07590H

K.H. Park, D.H. Kim, H. Kwak, S.H. Jung, H.-J. Lee, A. Banerjee, J.H. Lee, Y.S. Jung. Solution-derived glass-ceramic NaI×Na3SbS4 superionic conductors for all-solid-state Na-ion batteries. J. Mater. Chem. A 6, 17192 (2018).

https://doi.org/10.1039/C8TA05537H

M. Tatsumisago, A. Hayashi. Sulfi de glass-ceramic electrolytes for all-solid-state lithium and sodium batteries. Int. J. Appl. Glass Sci. 5, 226 (2014).

https://doi.org/10.1111/ijag.12084

W.F. Kuhs, R. Nitsche, K. Scheunemann. The argyrodites - a new family of the tetrahedrally close-packed structures. Mater. Res. Bull. 14, 241 (1979).

https://doi.org/10.1016/0025-5408(79)90125-9

T. Nilges, A. Pfitzner. A structural diff erentiation of quaternary copper argirodites: Structure- property relations of high temperature ion conductors.Z. Kristallogr. 220, 281 (2005).

https://doi.org/10.1524/zkri.220.2.281.59142

I.P. Studenyak, M. Kranjcec, M.V. Kurik. Urbach rule and disordering processes in Cu6P(S1−xSex)5Br1−yIy superionic conductors.J. Phys. Chem. Solids 67, 807 (2006).

https://doi.org/10.1016/j.jpcs.2005.10.184

H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaib, M. Schlosser. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 47, 755 (2008).

https://doi.org/10.1002/anie.200703900

L. Zhou, A. Assoud, Q. Zhang, X. Wu, L.F. Nazar. New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141 (48), 19002 (2019).

https://doi.org/10.1021/jacs.9b08357

H. Wang, C. Yu, S. Ganapathy, E.R.H. van Eck, L. van Eijck, M. Wagemaker. A lithium argyrodite Li6PS5Cl0.5Br0.5 electrolyte with improved bulk and interfacial conductivity. Journal of Power Sources 412, 29 (2019).

https://doi.org/10.1016/j.jpowsour.2018.11.029

Wo Dum Jung, Ji-Su Kim, Sungjun Choi, Seongmin Kim, Minjae Jeon, Hun-Gi Jung, Kyung Yoon Chung, Jong-Ho Lee, Byung-Kook Kim, Jong-Heun Lee, Hyoungchul Kim. Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth. Nano Lett. 20 (4), 2303 (2020).

https://doi.org/10.1021/acs.nanolett.9b04597

A.F. Orliukas, E. Kazakevicius, A. Kezionis, T. Salkus, I.P. Studenyak, R.Yu. Buchuk, I.P. Prits, V.V. Panko. Preparation, electric conductivity and dielectrical properties of Cu6PS5I-based superionic composites.Solid State Ionics 180, 183 (2009).

https://doi.org/10.1016/j.ssi.2008.12.005

I.P. Studenyak, V.Yu. Izai, V.I. Studenyak, O.V. Kovalchuk, T.M. Kovalchuk, P. Kop˘cansk'y, M. Timko, N. Tomasovicov'a, V. Zavisova, J. Miskuf, I.V. Oleinikova. Infl uence of Cu 6PS5I superionic nanoparticles on the dielectric properties of 6CB liquid crystal. Liquid Crystals 44, 897 (2017).

https://doi.org/10.1080/02678292.2016.1254288

T. Salkus, E. Kazakevicius, J. Banys, M. Kranjcec, A.A. Chomolyak, Yu.Yu. Neimet, I.P. Studenyak. Influence of grain size effect on electrical properties of Cu 6PS5I superionic ceramics. Solid State Ionics 262, 597 (2014).

https://doi.org/10.1016/j.ssi.2013.10.040

I.P. Studenyak, M.Kranj˘cec, V.Yu. Izai, A.A. Chomolyak, M. Vorohta, V. Matolin, C. Cserhati, S. K¨ok'enyesi. Structural and temperature-related disordering studies of Cu6PS5I amorphous thin fi lms. Thin Solid Films 520, 1729 (2012).

https://doi.org/10.1016/j.tsf.2011.08.043

M.E. Orazem, B. Tribollet. Electrochemical Impedance Spectroscopy. (Wiley, 2008).

https://doi.org/10.1002/9780470381588

I.P. Studenyak, A.I. Pogodin, V.I. Studenyak, V.Yu. Izai, M.J. Filep, O.P. Kokhan, M. Kranjcec, P.K'us. Electrical properties of copper- and silver-containing superionic (Cu1−xAgx)7SiS5I mixed crystals with argyrodite structure. Solid State Ionics 345, 115183 (2020). https://doi.org/10.1016/j.ssi.2019.115183

V.S. Urusov. Theoretical Crystallochemistry (MSU, 1987) (in Russian).

L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Lou¨er, P. Scardi. Rietveld refi nement guidelines. J. Appl. Crystallogr. 32, 36 (1999). https://doi.org/10.1107/S0021889898009856

A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio. EXPO2013: A kit of tools for phasing crystal structures from powder data. J. Appl. Crystallogr. 46, 1231 (2013). https://doi.org/10.1107/S0021889813013113

K. Momma, F. Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

A.K. Ivanov-Schitz, I.V. Murin. Solid State Ionics (St.-Petersburg State Univ., 2000) (in Russian).

R.A. Huggins. Simple method to determine electronic and ionic components of the conductivity in mixed conductors: A review. Ionics 8, 300 (2002). https://doi.org/10.1007/BF02376083

Downloads

Published

2021-07-06

How to Cite

Pogodin, A., Shender, I., Bereznyuk, S., Filep, M., Kokhan, O., Suslikov, L., & Studenyak, I. (2021). Structure and Electrical Properties of Superionic Ceramics Based on Silver-Enriched (Cu0.25Ag0.75)7SiS5I Solid Solution. Ukrainian Journal of Physics, 66(6), 489. https://doi.org/10.15407/ujpe66.6.489

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)