Conductivity of Graphene on Ferroelectric PVDF-TrFE

Authors

  • A. I. Kurchak V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • M. V. Strikha V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe59.06.0622

Keywords:

conductivity of graphene, PVDF-TrFE ferroelectric film, chemical vapor deposition

Abstract

The theory of conductivity in graphene grown by the chemical vapor deposition on a poly[(vinylidenefluoride-co-trifluoroethylene] (PVDF-TrFE) ferroelectric film has been developed with regard for the charge carrier scattering at large-scale potential nonuniformities created by both the domain structure of the ferroelectric and a nonuniform distribution of chemical dopants over the graphene surface. As the correlation length of nonuniformities increases, the graphene resistivity has been shown to decrease, and, in the case of a sufficiently uniform distribution of chemical dopants and the sufficiently large domain sizes, to achieve values of 100 Ω and less. Such values make the “graphene on PVDF-TrFE” system competitive with standard conductive and transparent indium tin oxide coverings for photovoltaics. The theoretical results have been compared with experimental data.

References

M.V. Strikha, Ukr. Fiz. Zh. Oglyady 7, 31 (2012).

M.V. Strikha, Ukr. J. Phys. Opt. 13, Suppl. 3, S5 (2012).

https://doi.org/10.3116/16091833/13/1/S5/2012

X. Hong, K. Zou, A.M. DaSilva, C.H. Ahn, and J. Zhu, Solid State Commun. 132, 1365 (2012).

https://doi.org/10.1016/j.ssc.2012.04.050

Y. Zheng, G.-X. Ni, C.-T. Toh et al., Appl. Phys. Lett. 94, 163505 (2009).

https://doi.org/10.1063/1.3119215

Y. Zheng, G.-X. Ni, C.-T. Toh et al., Phys. Rev. Lett. 105, 166602 (2010).

https://doi.org/10.1103/PhysRevLett.105.166602

S. Raghavan, I. Stolichnov, N. Setter et al., Appl. Phys. Lett. 100, 023507 (2012).

https://doi.org/10.1063/1.3676055

X. Hong, J. Hoffman, A. Posadas et al., Appl. Phys. Lett. 97, 033114 (2010).

https://doi.org/10.1063/1.3467450

Y. Zheng, G.-X. Ni, S. Bae et al., Europhys. Lett. 93, 17002 (2011).

https://doi.org/10.1209/0295-5075/93/17002

E.B. Song, B. Lian, S.M. Kim et al., Appl. Phys. Lett. 99, 042109 (2011).

https://doi.org/10.1063/1.3619816

M.V. Strikha, Ukr. J. Phys. Opt. 12, 162 (2011).

https://doi.org/10.3116/16091833/12/4/161/2011

M.V. Strikha, Ukr. J. Phys. Opt. 13, 45 (2012).

https://doi.org/10.3116/16091833/13/1/45/2012

G.-X. Ni, Y. Zheng, S. Bae, C.Y. Tan, O. Kahya, J. Wu, B.H. Hong, K. Yao, and B. Ozyilmaz, ACS NANO 6, 3935 (2012).

https://doi.org/10.1021/nn3010137

R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Brooth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science 320, 5881 (2008).

https://doi.org/10.1126/science.1156965

F.T. Vasko and V. Ryzhii, Phys. Rev. B 76, 233404 (2007).

https://doi.org/10.1103/PhysRevB.76.233404

S. Das Sarma, S. Adam, E.H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).

https://doi.org/10.1103/RevModPhys.83.407

V. Fridkin and S. Ducharme, Ferroelectricity at the Nanoscale. Basics and Applications (Springer, Berlin, 2014).

https://doi.org/10.1007/978-3-642-41007-9

J. Heo, H.C. Chung, S.-H. Lee et al., Phys. Rev. B 84, 035421 (2011).

https://doi.org/10.1103/PhysRevB.84.035421

M.V. Strikha and F.T. Vasko, J. Phys.: Condens. Matter 9, 663 (1997).

https://doi.org/10.1088/0953-8984/9/3/006

Yu.A. Kruglyak, N.Yu. Kruglyak, and M.V. Strikha, Sensorn. Elektr. Mikrosist. Tekhnol. 3, No. 4, 5 (2012).

B. Guo, L. Fang, B. Zhang, and J.R. Gong, Insciences J. 1, 80 (2011).

Published

2018-10-23

How to Cite

Kurchak, A. I., & Strikha, M. V. (2018). Conductivity of Graphene on Ferroelectric PVDF-TrFE. Ukrainian Journal of Physics, 59(6), 622. https://doi.org/10.15407/ujpe59.06.0622

Issue

Section

Solid matter

Most read articles by the same author(s)