Rival Mechanisms of Hysteresis in the Resistivity of Graphene Channel

  • A. I. Kurchak V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • A. N. Morozovska Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • M. V. Strikha V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
Keywords: graphene, mechanisms of hysteresis, adsorbates, surface dipoles

Abstract

A model for rival mechanisms of hysteresis that appears in the dependence of the resistivity of graphene channels created on substrates of various nature on the gate voltage has been developed. Two types of hysteresis were distinguished: direct (associated with the presence of adsorbates with dipole moments on the surface and the interface) and inverse (associated with the capture of charge carriers from the graphene layer by the localized states at the interface graphene–substrate). A capability of discerning between those channels by varying the rate of gate voltage sween was discussed. A good agreement is obtained between our theoretical predictions and the experimental data available in the literature.

References


  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004). https://doi.org/10.1126/science.1102896

  2. A.K. Geim, Science 324, 1530 (2009). https://doi.org/10.1126/science.1158877

  3. M.V. Strikha. Sensor Electr. Microsyst. Technol. 3, N 9, 5 (2012).

  4. Y. Zheng, G.-X. Ni, Z.-T. Toh et al., Appl. Phys. Lett. 94, 163505 (2009). https://doi.org/10.1063/1.3119215

  5. Y. Zheng, G.-X. Ni, Z.-T. Toh et al., Phys. Rev. Lett. 105, 166602 (2010). https://doi.org/10.1103/PhysRevLett.105.166602

  6. S. Raghavan, I. Stolichnov, N. Setter et al., Appl. Phys. Lett. 100, 023507 (2012). https://doi.org/10.1063/1.3676055

  7. J. Rouquette, J. Haines, V. Bornand et al., Phys. Rev. B 70, 014108 (2004). https://doi.org/10.1103/PhysRevB.70.014108

  8. X. Hong, J. Hoffman, A. Posadas et al., Appl. Phys. Lett. 97, 033114 (2010). https://doi.org/10.1063/1.3467450

  9. Y. Zheng, G.-X. Ni, S. Bae et al., Europhys. Lett. 93, 17002 (2011). https://doi.org/10.1209/0295-5075/93/17002

  10. E.B. Song, B. Lian, S.M. Kim et al., Appl. Phys. Lett. 99, 042109 (2011). https://doi.org/10.1063/1.3619816

  11. M.V. Strikha, Ukr. J. Phys. Opt. 12, 162 (2011). https://doi.org/10.3116/16091833/12/4/161/2011

  12. M.V. Strikha, JETP Lett. 95, 198 (2012). https://doi.org/10.1134/S002136401204008X

  13. A.I. Kurchak and M.V. Strikha, JETP 116, 112 (2013). https://doi.org/10.1134/S106377611301007X

  14. N. Lafkioti, B. Krauss, T. Lohmann et al., Nano Lett. 10, 1149 (2010). https://doi.org/10.1021/nl903162a

  15. H.Wang, Y.Wu, C. Cong et al., ACS Nano 4, 7221 (2010). https://doi.org/10.1021/nn101950n

  16. S.S. Sabri, P.L. Levesque, C.M. Aguirre et al., Appl. Phys. Lett. 95, 242104 (2009). https://doi.org/10.1063/1.3273396

  17. P.L. Levesque, S.S. Sabri, C.M. Aguirre et al., Nano Lett. 11, 132 (2011). https://doi.org/10.1021/nl103015w

  18. A. Veligura, in Zernike Institute PhD thesis series 2012-24 (2012), p. 53.

  19. S. Das Sarma, Sh. Adam, E.H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011). https://doi.org/10.1103/RevModPhys.83.407

  20. Ju. Li, X. Xiao, F. Yang, M.W. Verbrugge, and Y.-T. Cheng, J. Phys. Chem. C 116, 1472 (2012). https://doi.org/10.1021/jp207919q

  21. S.V. Kalinin and A.N. Morozovska, submitted to J. Electroceram.

  22. S.H. Glarum, J. Chem. Phys. 33, 1371 (1960). https://doi.org/10.1063/1.1731414

  23. A. Veligura, P.J. Zomer, I.J. Vera-Marun et al., J. Appl. Phys. 110, 113708 (2011). https://doi.org/10.1063/1.3665196

Published
2018-10-06
How to Cite
Kurchak, A., Morozovska, A., & Strikha, M. (2018). Rival Mechanisms of Hysteresis in the Resistivity of Graphene Channel. Ukrainian Journal of Physics, 58(5), 472. https://doi.org/10.15407/ujpe58.05.0472
Section
Solid matter