Generalized Landauer–Datta–Lundstrom Model in Application to Transport Phenomena in Graphene
Keywords:
-Abstract
The generalized model of electron transport in the linear response regime developed by R. Landauer, S.Datta, and M. Lundstrom (LDL model) with application to the resistors of any dimension, any size, and arbitrary dispersion working in the ballistic, quasiballistic, or diffusion regimes is summarized in a tutorial review article for the reseachers and universities’ teachers and students. The peculiarities of the electron mobility, as well as the dissipation of heat and the voltage drop in ballistic resistors, are also under consideration.
On the basis of the LDL transport model, the characteristics of graphene such as the density of electronic states, dependence of the concentration of carriers on the gate voltage, dependence of the number of modes on the energy, maximum conductivity value, various mechanisms of scattering of carriers and the corresponding mobility determined through the Drude formula, cyclotron frequency, effective mass of carriers, frequency limits for a graphene FET, function of the density of phonon states, and relative contribution of electrons and phonons to the thermal conductivity are discussed.
References
Ю.А. Кругляк, Н.Ю. Кругляк, М.В. Стрiха, Уроки нанонелектронiки: виникнення струму, формулювання закону Ома i моди провiдностi в концепцiї “знизу–вгору”. Сенсорна електронiка i мiкросистемнi технологiї 9, №4, 5–30 (2012).
Ю.А. Кругляк, Н.Ю. Кругляк, М.В. Стрiха, Уроки нанонелектронiки: термоелектричнi явища в концепцiї “знизу–вгору”. Сенсорна електронiка i мiкросистемнi технологiї 10, №1, 6–21 (2013).
Ю.А. Кругляк, Н.Ю. Кругляк, М.В. Стрiха, Уроки нанонелектронiки: спiнтронiка в концепцiї “знизу–вгору”. Сенсорна електронiка i мiкросистемнi технологiї 10, №2, 5–37 (2013).
Ю.А. Кругляк, М.В. Стрiха, Уроки нанонелектронiки: метод нерiвноважних функцiй Грiна у матричному зображеннi. I. Теорiя. Сенсорна електронiка i мiкросистемнi технологiї 10, №3, 22–35 (2013).
Ю.А. Кругляк, М.В. Стрiха, Уроки нанонелектронiки: метод нерiвноважних функцiй Грiна у матричному зображеннi. II. Модельнi транспортнi задачi. Сенсорна електронiка i мiкросистемнi технологiї 10, №4, 5–22 (2013).
Ю.А. Кругляк, М.В. Стрiха, Уроки нанонелектронiки: ефект Холла i вимiрювання електрохiмiчних потенцiалiв у концепцiї “знизу–вгору”. Сенсорна електронiка i мiкросистемнi технологiї 11, №1, 5–27 (2014).
Ю.А. Кругляк, М.В. Стрiха, Уроки нанонелектронiки: транспорт спiнiв i квантовий спiновий ефект Холла в концепцiї “знизу–вгору”. Сенсорна електронiка i мiкросистемнi технологiї 11, №2, 5–22 (2014).
Ю.О. Кругляк, М.В. Стрiха, Уроки наноелектронiки: квантова iнтерференцiя i дефазування в методi нерiвноважних функцiй Грiна. Сенсорна електронiка i мiкросистемнi технологiї 11, №3, 5–18 (2014).
Ю.О. Кругляк, М.В. Стрiха, Уроки наноелектронiки: роль електростатики й контактiв у концепцiї “знизу–вгору”. Сенсорна електронiка i мiкросистемнi технологiї 11, №4, 27–42 (2014).
Ю.О. Кругляк, М.В. Стрiха, Уроки наноелектронiки: електричний струм i другий закон термодинамiки у концепцiї “знизу–вгору”. Сенсорна електронiка i мiкросистемнi технологiї 12, №2, 5–26 (2015).
R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).
R. Landauer, Electrical resistance of disordered one dimensional lattices. Philos. Mag. 21, 863–867 (1970).
S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport (World Scientific Publishing Company, Hackensack, New Jersey, 2012); 2015: www.edx.org/school/purduex.
S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 2001).
S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005).
M. Lundstrom and C. Jeong, Near-Equilibrium Transport: Fundamentals and Applications (World Scientific Publishing Company, Hackensack, New Jersey, 2013);
www.nanohub.org/resources/11763.
M. Lundstrom,NanoscalesTransistors,www.nanohub.org/courses/NT.
Yu.A. Kruglyak and M. Strikha, Landauer–Datta–Lundstrom generalized electron transport model for micro- and nanoelectronics. In Proc. 2015 IEEE 35th Intern. Conf. Electronics Nanotech. (ELNENO), April 21–24, 2015, Kyiv, Ukraine, pp. 70–74; DOI: 10.1109/ELNENO.2015.7146837.
Yu.A. Kruglyak and M. Strikha, Heat flow by phonons in Landauer–Datta–Lundstrom transport model for micro- and nanoelectronics. In Proc. 2015 IEEE 35th Intern. Conf. Electronics Nanotech. (ELNENO), April 21–24, 2015, Kyiv, Ukraine, pp. 75–80; DOI: 10.1109/ELNENO.2015.7146838.
Ю.О. Кругляк, М.В. Стрiха, Узагальнена модель електронного транспорту в мiкро- i наноелектронiцi. Сенсорна електронiка i мiкросистемнi технологiї 12, №3, 4–27 (2015).
Ю.О. Кругляк, М.В. Стрiха, Термоелектричнi явища та пристрої з позицiй узагальненої моделi транспорту електронiв. Сенсорна електронiка i мiкросистемнi технологiї 12, №4, 5–18 (2015).
Ю.О. Кругляк, М.В. Стрiха, Термоелектричнi коефiцiєнти в узагальненiй моделi транспорту електронiв. Сенсорна електронiка i мiкросистемнi технологiї 13, №1, 5–25 (2016).
R.F. Pierret, Semiconductor Device Fundamentals (Addison–Wesley, Reading, MA, 1996).
H.C. Berg, Random walks in biology (Princeton University Press, Princeton, 1993).
B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848 (1988).
M.S. Shur, Low ballistic mobility in GaEs HEMTs. IEEE Electron Dev. Lett. 23, 511 (2002).
Jing Wang and M. Lundstrom, Ballistic transport in high electron mobility transistors. IEEE Trans. Electron Dev. 50, 1604 (2003).
Н. Ашкрофт, Н. Мермин, Физика твердого тела (Москва, Мир, 1979).
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
М.В. Стрiха, Фiзика графену: стан i перспективи. Сенсорна електронiка i мiкросистемнi технологiї 7, №3, 5–13 (2010).
В. Гусинiн, В. Локтєв, В. Шарапов, Графен: неймовiрне стало можливим. Вiсник НАН України №12, 51–59 (2010).
A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009).
K.S. Novoselov, Beyond the wonder material. Physics World 22, 27–30 (2009).
С.В.Морозов, К.С. Новоселов, А.К. Гейм, Электронный транспорт в графене. Успехи физических наук 178, №7, 776–780 (2008).
A.K. Geim and K.S. Novoselov, The rise of graphene. Nature Mat. 6, 183–191 (2007).
М.В. Стрiха, Нерiвноважнi електрони й дiрки в графенi (огляд). Сенсорна електронiка i мiкросистемнi технологiї 8, №1, 10–19 (2011).
S. Das Sarma, S. Adam, E.H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).
V.P. Gusynin and S.G. Sharapov, Unconventional integer quantum hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005).
V.P. Gusynin and S.G. Sharapov, Transport of Dirac quasi-particles in graphene: Hall and optical conductivities. Phys. Rev. B 73 245411 (2006).
V.P. Gusynin, S.G. Sharapov, and H. Beck, Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. Phys. Rev. B 69, 075104 (2004).
V.P. Gusynin and S.G. Sharapov, Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. II. Transport properties. Phys. Rev. B 71, 125124 (2005).
V.P. Gusynin and S.G. Sharapov, Unusual microwave response of Dirac quasiparticles in graphene. Phys. Rev. Lett. 96, 256802 (2006).
В.П. Драгунов, И.Г. Неизвестный, Наноструктуры: физика, технология, применения (НГТУ, Новосибирск, 2008).
Mingsheng Xu, Tao Liang, Minmin Shi, and Hongzheng Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, №5, 3766–3798 (2013).
Qing Tang, Zhen Zhou, and Zhongfang Chen, Innovation and discovery of graphene-like materials via density-functional theory computations. Wiley Interdisciplinary Reviews: Computational Molecular Science 5, 360–379 (2015).
P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–629 (1947).
J.W. McClure, Diamagnetism of graphite. Phys. Rev. 104, 666–671 (1956).
J.C. Slonczewski and P.R.Weiss, Band structure of graphite. Phys. Rev. 109, 272–279 (1958).
T. Ando, Theory of electronic states and transport in carbon nanotubes. J. Phys. Soc. Japan 74, 777–817 (2005).
N.H. Shon and T. Ando, Quantum transport in two-dimensional graphite system. J. Phys. Soc. Japan 67, 2421–2429 (1998).
R.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Y. Zhang, Y.-W. Tan, H.L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
N.M.R. Peres, J.M.B. Lopes dos Santos, and T. Stauber, Phenomenological study of the electronic transport coefficients of graphene. Phys. Rev. B 76, 073412 (2007).
W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235–402 (2009).
V. Perebeinos and P. Avouris, Inelastic scattering and current saturation graphene. Phys. Rev. B 81, 195442 (2010).
R.B. Laughlin, Condensed Matter Theory (II): Graphene Band Structure/Graphene Density of States, http://large.stanford.edu/courses/2008/ph373.
S. Datta, Graphene Bandstructures (Purdue University, Purdue, 2008); www.nanohub.org/resources/5710.
S. Datta, Graphene Density of States I (Purdue University, Purdue, 2008); www.nanohub.org/resources/5721.
S. Datta, Graphene Density of States II (Purdue University, Purdue, 2008); www.nanohub.org/resources/5722.
Е.В. Горбар, С.Г. Шарапов, Основи фiзики графену (Київ, 2013).
Ю.А. Кругляк, Н.Е. Кругляк, Методические аспекты расчета зонной структуры графена с учетом q-остова. Теоретические основы. Вестник Одес. гос. эколог. ун-та №13, 207–218 (2012).
M.V. Strikha, Non volatile memory of new generation and ultrafast IR modulators based on graphene on ferroelectric substrate. In: Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting, edited by A. Nazarov, F. Balestra, V. Kilchytska, D. Flandre (Springer, Berlin, 2014), p. 163–178.
M. Lundstrom, Sums in k-space/Integrals in Energy Space (Purdue University, Purdue, 2009); www.nanohub.org/resources/7296.
D. Berdebes, T. Low, and M. Lundstrom, Lecture Notes on Low Bias Transport in Graphene: An Introduction (Purdue University, Purdue, 2009); www.nanohub.org/resources/7435.
M. Lundstrom and C. Jeong, Near-Equilibrium Transport: Fundamentals and Epplications (World Scientific Publishing Company, Hackensack, New Jersey, 2013); www.nanohub.org/ resources/11763.
D. Nika and A.A. Balandin, Two-dimensional phonon transport in graphene. J. Phys.: Condens. Matter 24, 233203 (2012).
D. Singh, J.Y. Murthy, and T.S. Fisher, Spectral phonon conduction and dominant scattering pathways in graphene. J. Appl. Phys. 110, 094312 (2011).
А.I. Курчак, М.В. Стрiха, Провiднiсть графену на сегнетоелектрику PVDF-TrFE. УФЖ 59, 623–628 (2014).
J. Zheng, L. Wang, R. Quhe, Q. Liu, H. Li, D. Yu, W.N. Mei, J. Shi, Z. Gao, and J. Lu, Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation. Sci. Rep. 3, 1314–1322 (2013).
М.В. Стрiха, Частотнi межi для графенового провiдного каналу, зумовленi наявнiстю квантової ємностi та кiнетичної iндуктивностi. УФЖ 60, 355–359 (2015).
S. Salahuddin, M. Lundstrom, and S. Datta, Transport effects on signal propagation in quantum wires. IEEE Transactions on Electron Devices 52, 1734–1742 (2005).
А.Ф. Варламов, А.В. Кавокин, И.А. Лукьянчук, С.Г. Шарапов, Аномальные термоэлектрические и термомагнитные свойства графена. Успехи физических наук 182, 1229–1234 (2012).
S.G. Sharapov and A.A. Varlamov, Anomalous growth of thermoelectric power in gapped graphene. Phys. Rev. B 86, 035430 (2012).
Ю.А. Кругляк, Графен в транспортной модели Ландауэра–Датты–Лундстрома. ScienceRise 2, №2(7), 93–106 (2015).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.