Dimerization Degree of Water Molecules, Their Effective Polarizability, and Heat Capacity of Saturated Water Vapor
DOI:
https://doi.org/10.15407/ujpe63.2.121Keywords:
saturated water vapor, effective polarizability, heat capacity at a constant volumeAbstract
The properties of water vapor have been studied. The main attention is focused on the physical nature of the effective polarizability of water vapor and the heat capacity of water vapor at a constant volume, with a proper modeling of those parameters being a good test for a correct description of the dimer concentration in various approaches. Thermal vibrations of water dimers are found to be the main factor governing the specific temperature dependences of those characteristics, and the normal coordinates of dimer vibrations are determined. Fluctuations of the dipole moments of dimers and their contribution to the dielectric permittivity of water vapor are considered in detail. The contribution of the interparticle interaction to the heat capacity is taken into account. By analyzing the effective polarizability and the heat capacity, the temperature dependence of the dimer concentration at the vapor-liquid coexistence curve is determined. The noticeable dimerization in saturated water vapor takes place only at temperatures T/Tc > 0.8, where Tc is the critical temperature.
References
</li>
<li>K. Burrows, E.R. Pike, J.M. Vaughan. Light-scattering experiments on water vapour at pressures approaching saturation. Nature 260, 131 (1976).
<a href="https://doi.org/10.1038/260131a0">https://doi.org/10.1038/260131a0</a>
</li>
<li>G.E. Ashwell, P.A. Eggett, R. Emery, H.A. Gebbie. Molecular complexity of water vapour and the speed of sound. Nature 247, 196 (1974).
<a href="https://doi.org/10.1038/247196a0">https://doi.org/10.1038/247196a0</a>
</li>
<li>L. A. Curtiss, D. J. Frurip, M. J. Blander. Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity. Chem. Phys. 71, 2703 (1979).
<a href="https://doi.org/10.1063/1.438628">https://doi.org/10.1063/1.438628</a>
</li>
<li>R.A. Bohlander, H.A. Gebbie, G.W.F. Pardoe. Absorption spectrum of water vapor in the region of 23 cm?1 at low temperatures. Nature 228, 156 (1970).
<a href="https://doi.org/10.1038/228156a0">https://doi.org/10.1038/228156a0</a>
</li>
<li>J. Hargrove. Water dimer absorption of visible light. Atmos. Chem. Phys. Discuss. 7, 11123 (2007).
<a href="https://doi.org/10.5194/acpd-7-11123-2007">https://doi.org/10.5194/acpd-7-11123-2007</a>
</li>
<li>A.J.L. Shillings, S.M. Ball, M.J. Barber, J. Tennyson, R.L. Jones. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list. Atmos. Chem. Phys. 11, 4273 (2011).
<a href="https://doi.org/10.5194/acp-11-4273-2011">https://doi.org/10.5194/acp-11-4273-2011</a>
</li>
<li>A.A. Vigasin. Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes. J. Quant. Spectr. Rad. Transf. 64, 25 (2000).
<a href="https://doi.org/10.1016/S0022-4073(98)00142-3">https://doi.org/10.1016/S0022-4073(98)00142-3</a>
</li>
<li>A.A. Vigasin, A.I. Pavlyuchko, Y. Jin, S. Ikawa. Density evolution of absorption bandshapes in the water vapor OH-stretching fundamental and overtone: evidence for molecular aggregation. J. Mol. Str. 742, 173 (2005).
<a href="https://doi.org/10.1016/j.molstruc.2004.12.060">https://doi.org/10.1016/j.molstruc.2004.12.060</a>
</li>
<li> C.J. Leforestier.Water dimer equilibrium constant calculation: A quantum formulation including metastable states. Chem. Phys. 140, 074106 (2014).
<a href="https://doi.org/10.1063/1.4865339">https://doi.org/10.1063/1.4865339</a>
</li>
<li> J.O. Hirschfelder, F.T. McClure, I.F. Weeks. Second virial coefficients and the forces between complex molecules. J. Chem. Phys. 10, 201 (1942).
<a href="https://doi.org/10.1063/1.1723708">https://doi.org/10.1063/1.1723708</a>
</li>
<li> D. Stogrynt, J.O. Hirschfelder. Contribution of bound, metastable, and free molecules to the second virial coefficient and some properties of double molecules. J. Chem. Phys. 31, 6, 1531 (1959).
</li>
<li> G. N.I. Clark, D.C. Christopher, J.D. Smith, R.J. Saykally. The structure of ambient water. Mol. Phys. 108, 1415 (2010).
<a href="https://doi.org/10.1080/00268971003762134">https://doi.org/10.1080/00268971003762134</a>
</li>
<li> Y. Scribano, N. Goldman, R.J. Saykally. Water dimers in the atmosphere III: Equilibrium constant from a flexible potential. J. Phys. Chem. A 110, 5411 (2006).
<a href="https://doi.org/10.1021/jp056759k">https://doi.org/10.1021/jp056759k</a>
</li>
<li> N.P. Malomuzh, V.N. Makhlaichuk, S.V. Hrapatiy. Water dimer dipole moment. Russ. J. Phys. Chem. A 88, 1431 (2014).
<a href="https://doi.org/10.1134/S0036024414080172">https://doi.org/10.1134/S0036024414080172</a>
</li>
<li> J.R. Reimers, R.O. Watts. The structure and vibrational spectra of small clusters of water molecules. Chem. Phys. 85, 83 (1984).
<a href="https://doi.org/10.1016/S0301-0104(84)85175-7">https://doi.org/10.1016/S0301-0104(84)85175-7</a>
</li>
<li> H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J. Hermans. In Intermolecular Forces. Edited by B. Pullman (Reidel, 1981), p. XXXXXX.
</li>
<li> M.J. Smit, G.C. Groenenboom, P.E.S.Wormer, Ad van der Avoird, R. Bukowski, K. Szalewicz. Vibrations, tunneling, and transition dipole moments in the water dimer. J. Phys. Chem. A 105, 6212 (2001).
<a href="https://doi.org/10.1021/jp004609y">https://doi.org/10.1021/jp004609y</a>
</li>
<li> H. Fr?ohlich. Theory of Dielectrics: Dielectric Constant and Dielectric Loss (Clarendon, 1958).
</li>
<li> V.L. Kulinskii, N.P. Malomuzh. Dipole fluid as a basic model for the equation of state of ionic liquids in the vicinity of their critical point. Phys. Rev. E 67, 011501 (2003).
<a href="https://doi.org/10.1103/PhysRevE.67.011501">https://doi.org/10.1103/PhysRevE.67.011501</a>
</li>
<li> D.P. Fernandez, Y. Mulev, A.R.H. Goodwin, J.M.H. Levelt Sengers. A database for the static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 24, 133 (1995).
<a href="https://doi.org/10.1063/1.555977">https://doi.org/10.1063/1.555977</a>
</li>
<li> N.P. Malomuzh, V.N. Mahlaichuk, S.V. Hrapatiy. Water dimer equilibrium constant of saturated vapor. Russ. J. Phys. Chem. A 88, 1287 (2014).
<a href="https://doi.org/10.1134/S003602441406017X">https://doi.org/10.1134/S003602441406017X</a>
</li>
<li> N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, K.N. Pankratov. Cluster structure of water in accordance with the data on dielectric permittivity and heat capacity. J. Struct. Chem. 54, 205 (2013).
<a href="https://doi.org/10.1134/S0022476613080039">https://doi.org/10.1134/S0022476613080039</a>
</li>
<li> A.I. Fisenko, N.P. Malomuzh, A.V. Oleynik. To what extent are thermodynamic properties of water argon-like? Chem. Phys. Lett. 450, 297 (2008).
<a href="https://doi.org/10.1016/j.cplett.2007.11.036">https://doi.org/10.1016/j.cplett.2007.11.036</a>
</li>
<li> L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008).
<a href="https://doi.org/10.1016/j.cplett.2008.01.028">https://doi.org/10.1016/j.cplett.2008.01.028</a>
</li>
<li> L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-diffusion in water and other liquids. J. Mol. Liq. 137, 1 (2008).
<a href="https://doi.org/10.1016/j.molliq.2007.05.003">https://doi.org/10.1016/j.molliq.2007.05.003</a>
</li>
<li> E.W. Lemmon, M.O. McLinden, D.G. Friend. Thermophysical properties of fluid systems. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Edited by P.J. Linstrom and W.G. Mallard (National Institute of Standards and Technology, XXXX).
</li>
<li> L.D. Landau, E.M. Lifshitz. Statistical Physics (Pergamon, 1980).
</li>
<li> M.V. Timofeev. Simulation of the interaction potential between water molecules. Ukr. J. Phys. 61, 893 (2016).
<a href="https://doi.org/10.15407/ujpe61.10.0893">https://doi.org/10.15407/ujpe61.10.0893</a>
</li>
<li> J.O. Hirschfelder, Ch.F. Curtiss, R.B. Bird. Molecular Theory of Gases and Liquids (Wiley, 1954).
</li>
<li> S.V. Lishchuk, N.P. Malomuzh, P.V. Mahlaichuk. Why thermodynamic properties of normal and heavy water are similar to those of argon-like liquids? Phys. Lett. A 374, 2084 (2010).
<a href="https://doi.org/10.1016/j.physleta.2010.02.070">https://doi.org/10.1016/j.physleta.2010.02.070</a>
</li>
<li> A.H. Harvey, E.W. Lemmon. Correlation for the second virial coefficient of water. J. Phys. Chem. Ref. Data 33, 369 (2004).
<a href="https://doi.org/10.1063/1.1587731">https://doi.org/10.1063/1.1587731</a>
</li>
<li> G.T. Evans, V. Vaida. Aggregation of water molecules: Atmospheric implications. J. Chem. Phys. 113, 6652 (2000).
<a href="https://doi.org/10.1063/1.1310601">https://doi.org/10.1063/1.1310601</a>
</li>
<li> Y. Scribano, N. Goldman, R.J. Saykally, C. Leforestier. Water dimers in the atmosphere III: Equilibrium constant from a flexible potential. J. Phys. Chem. A 110, 5411 (2006).
<a href="https://doi.org/10.1021/jp056759k">https://doi.org/10.1021/jp056759k</a>
</li>
<li> M.Yu. Tretyakov, D.S. Makarov. Some consequences of high temperature water vapor spectroscopy: Water dimer at equilibrium. J. Chem. Phys. 134, 084306 (2011).
<a href="https://doi.org/10.1063/1.3556606">https://doi.org/10.1063/1.3556606</a>
</li>
<li> Moscow Power Engineering Institute, Mathcad Calculation Server.
</li>
<li> N.D. Sokolov. Hydrogen bond. Usp. Fiz. Nauk 57, 205 (1955) (in Russian).
<a href="https://doi.org/10.3367/UFNr.0057.195510d.0205">https://doi.org/10.3367/UFNr.0057.195510d.0205</a>
</li>
<li> W.L.J. Jorgensen. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. Am. Chem. Soc. 103, 335 (1981).
<a href="https://doi.org/10.1021/ja00392a016">https://doi.org/10.1021/ja00392a016</a>
</li>
<li> M.D. Dolgushin, V.M. Pinchuk. Theoretical study of the nature of a hydrogen bond by means of comparative calculations. Preprint ITP-76-49R (Inst. for Theor. Phys. of the NASU, 1976) (in Russian).
</li>
<li> I.V. Zhyganiuk, M.P. Malomuzh. Physical nature of hydrogen bond. Ukr. J. Phys. 60, 960 (2015).
<a href="https://doi.org/10.15407/ujpe60.09.0960">https://doi.org/10.15407/ujpe60.09.0960</a>
</li>
<li> P.V. Makhlaichuk, M.P. Malomuzh, I.V. Zhyganiuk. Potential in the multipole approximation. Ukr. J. Phys. 58, 278 (2013).
<a href="https://doi.org/10.15407/ujpe58.03.0278">https://doi.org/10.15407/ujpe58.03.0278</a>
</li>
<li> R.C. Dougherty, L.N. Howard. Equilibrium structural model of liquid water: Evidence from heat capacity, spectra, density, and other properties. J. Chem. Phys. 109, 7379 (1998).
<a href="https://doi.org/10.1063/1.477344">https://doi.org/10.1063/1.477344</a>
</li>
<li> National Institute of Standards and Technology, A gateway to the data collections [http://webbook.nist.gov].
</li>
<li> P.V. Makhlaichuk, V.N. Makhlaichuk, N.P. Malomuzh. Nature of the kinematic shear viscosity of low-molecular liquids with averaged potential of Lennard-Jones type. J. Mol. Liq. 225, 577 (2017).
<a href="https://doi.org/10.1016/j.molliq.2016.11.101">https://doi.org/10.1016/j.molliq.2016.11.101</a></li></ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.