Nature of Self-Diffusion in Fluids

  • M. P. Malomuzh I.I. Mechnikov Odesa National University
Keywords: self-diffusion coefficient, shear viscosity, molecular liquids

Abstract

The nature of the self-diffusion in low-molecular fluids is discussed. The particular attention is paid to atomic fluids (such as argon), liquid metals, and associated fluids (such as water). The self-diffusion coefficient in the fluids of all indicated types is considered to be the sum of two components: one of them is associated with the transfer of molecules by hydrodynamic vortex modes, and the other is generated by the circulatory motion of local molecular groups. The both components have a collective nature, they are genetically related to each other and differ only by their scales: the former is mesoscopic, the latter is nanoscopic. Manifestations of the collective vortical transport of molecules as specific features in the time dependence of the root-mean-square displacement of molecules are discussed. Sound arguments are proposed concerning the inadequacy of the activation mechanism of thermal molecular motion in low-molecular liquids. The immanent contradiction of exponential temperature dependences for the viscosity and self-diffusion coefficients is proved. In all cases, the preference is given to qualitative arguments.

References

E.I. Kharkov, V.I. Lysov, V.E. Fedorov. Physics of Liquid Metals (Vyshcha Shkola, Kyiv, 1979) (in Russian).

L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-diffusion in water and other liquids. J. Mol. Liq. 137, 1 (2008). https://doi.org/10.1016/j.molliq.2007.05.003

I.Z. Fisher. Hydrodynamic asymptotics of autocorrelation function of molecular velocity in classical fluid. Zh. ` Eksp. Teor. Fiz. 61, 1647 (1971) (in Russian).

N.P. Malomuzh, I.Z. Fisher. On the collective nature of thermal motion in fluids. Fiz. Zhidk. Sost. 1, 33 (1973) (in Russian).

L.A. Bulavin, A.A. Vasilkevich, A.K. Dorosh, V.T. Krotenko, V.I. Slisenko. Self-diffusion of water in aqueous solutions of singly charged electrolytes. Ukr. Fiz. Zh. 31, 1703 (1986) (in Russian).

L.A. Bulavin, P.G. Ivanitskii, V.T. Krotenko, V.N. Lyaskovskaya. Neutron studies of water self-diffusion in aqueous electrolyte solutions. Zh. Fiz. Khim. 61, 3270 (1987) (in Russian).

N.P. Malomuzh, K.S. Shakun. Maxwell relaxation time for argon. Physica (to be published).

T.V. Lokotosh, N.P. Malomuzh, K.N. Pankratov. Thermal motion in water-electrolyte solutions according to quasi- elastic incoherent neutron scattering data. J. Chem. Eng. Data 55, 2021 (2010). https://doi.org/10.1021/je9009706

A. Einstein. Eine neue Bestimmung der Molekuldimensionen. Ann. Phys. 19, 289 (1906). https://doi.org/10.1002/andp.19063240204

E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1993).

J. Frenkel. Kinetic Theory of Liquids (Dover, 1955).

E.N. da C. Andrade. The viscosity of liquids. Proc. Phys. Soc. 52, 748 (1940). https://doi.org/10.1088/0959-5309/52/6/302

H. Eyring. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936). https://doi.org/10.1063/1.1749836

CRS Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data. Edited by R.C. West, (CRS Press, 1996).

NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Edited by P.J. Linstrom, W.G. Mallar [http://webbook.nist.gov].

V.P. Slusar, N.S. Rudenko, V.M. Tretyakov. Experimental study of the viscosity of simple substances on the saturation line and under pressure. II Argon, krypton, xenon. Ukr. Fiz. Zh. 17, 1257 (1972) (in Russian).

V.N. Makhlaichuk. Kinematic shear viscosity of liquid alkaline metals. Ukr. J. Phys. 62, 672, (2017). https://doi.org/10.15407/ujpe62.08.0672

O.Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions (Consultants Bureau, 1965).

T. Iida, N. Tripathi, M. Isac, R.I.L. Guthrie. Models and equations for atomic transport coefficients of liquid metals: Viscosity and self-diffusivity. Mater. Sci. Forum 539–543, 2509 (2007). https://doi.org/10.4028/www.scientific.net/MSF.539-543.2509

T.V. Lokotosh, M.P. Malomuzh, K.M. Pankratov, K.S. Shakun. New results in the theory of collective self-diffusion in liquids. Ukr. Fiz. Zh. 60, 697 (2015) (in Ukrainian).

P.V. Makhlaichuk, M.P. Malomuzh, I.V. Zhyganiuk. Nature of hydrogen bond in water. Ukr. J. Phys. 57, 113 (2012).

D. Eisenberg, V. Kauzmann. The Structure and Properties of Water (Oxford Univ. Press, 1969). C.A. Croxton. Liquid State Physics – A Statistical Mechanical Introduction (Cambridge Univ. Press, 1974).

N.P. Malomuzh, V.P. Oleynik. Nature of the kinematic shear viscosity of water. J. Struct. Chem. 49, 1055 (2008). https://doi.org/10.1007/s10947-008-0178-1

L.A. Bulavin, A.I. Fisenko, N.P. Malomuz. Surprisin properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008). https://doi.org/10.1016/j.cplett.2008.01.028

K. Okada, M. Yao, Y. Hiejima, H. Kohno, Y. Kojihara. Dielectric relaxation of water and heavy water in the whole fluid phase. J. Chem. Phys. 110, 3026 (1999). https://doi.org/10.1063/1.477897

H.R. Pruppacher. Self-diffusion coefficient of supercooled water. J. Chem. Phys. 56, 101 (1972). https://doi.org/10.1063/1.1676831

K. Simpson, M. Karr. Diffusion and nuclear spin relaxation in water. Phys. Rev. 111, 1201 (1958) https://doi.org/10.1103/PhysRev.111.1201

L.A. Bulavin, N.P. Malomuzh, K.N. Pankratov. The character of the thermal motion of water molecules according to the data of quasi-elastic incoherent slow neutron scattering. Zh. Strukt. Khim. 47, 54 (2006) (in Russian).

L.A. Bulavin, N.P. Malomuzh, K.N. Pankratov. Specific features of self-diffusion in water.Zh. Strukt. Khim. 47, S54 (2006) (in Russian).

L.A. Bulavin, N.P. Malomuzh. Upper temperature limit for the existence of living matter. J. Mol. Liq. 124, 136 (2006). https://doi.org/10.1016/j.molliq.2005.11.027

T.V. Lokotosh, S. Magazu, G. Maisano, N.P. Malomuzh. Nature of self-diffusion and viscosity in supercooled liquid water. Phys. Rev. E 62, 3572 (2000). https://doi.org/10.1103/PhysRevE.62.3572

P.V. Makhlaichuk, V.N. Makhlaichuk, N.P. Malomuzh. Nature of the kinematic shear viscosity of low-molecular liquids with averaged potential of Lennard-Jones type. J. Mol. Liq. 225, 577 (2017). https://doi.org/10.1016/j.molliq.2016.11.101

N.P. Malomuzh, K.S. Shakun, A.A. Kuznetsova. New possibilities provided by the analysis of the molecular velocity autocorrelation function in liquids. Ukr. Fiz. Zh. 63, 317 (2018) (in Ukrainian). https://doi.org/10.15407/ujpe63.4.317

V.M. Makhlaichuk. Qualitative properties of shear viscosity in liquids. Ukr. Fiz. Zh. (to be published) (in Ukrainian). https://doi.org/10.15407/ujpe63.11.986

P. Resibois, M. De Leener. Classical Kinetic Theory of Fluids (Wiley, 1978).

V.S. Oskotskii. To the theory of quasi-elastic scattering of cold neutrons in liquids. Fiz. Tverd. Tela 5, 1082 (1962) (in Russian).

S.A. Mikhailenko, V.V. Yakuba, A.E. Butko. Self-diffusion and nuclear magnetic relaxation in methane-argon liquid mixtures. Fiz. Nizk. Temp. 4, 562 (1978) (in Russian).

S.A. Mikhailenko, V.V. Yakuba. Self-diffusion and nuclear magnetic relaxation in liquid propylene and its mixtures with krypton. Ukr. Fiz. Zh. 27, 712 (1982) (in Russian).

T.V. Lokotosh, N.P. Malomuzh. Lagrange theory of thermal hydrodynamic fluctuations and collective diffusion in liquids. Physica A 286, 474 (2000). https://doi.org/10.1016/S0378-4371(00)00107-2

T.V. Lokotosh, N.P. Malomuzh. Manifestation of the collective effects in the rotational motion of molecules in liquids. J. Mol. Liq. 93, 95 (2001). https://doi.org/10.1016/S0167-7322(01)00214-8

T.V. Lokotosh, N.P. Malomuzh, K.S. Shakun. Nature of oscillations for the autocorrelation functions for transversal and angular velocities of a molecule. J. Mol. Liq. 96–97, 245 (2002). https://doi.org/10.1016/S0167-7322(01)00351-8

V.P. Voloshin, G.G. Malenkov, Yu.I. Naberukhin. The study of collective motions in computer models of water. Large-scale and long-term correlations. Zh. Strukt. Khim. 54 S2, 239 (2013) (in Russian).

G.G. Malenkov, Y.I. Naberukhin, V.P. Voloshin. Collective effects in molecular motions in liquids. Russ. J. Phys. Chem. A 86, 1378 (2012). https://doi.org/10.1134/S003602441209004X

A.V. Anikeenko, G.G. Malenkov, Yu.I. Naberukhin. Vizualization of the collective vortex-like motions in liquid argon and water: Molecular dynamic simulation. J. Chem. Phys. 148, 094508 (2018). https://doi.org/10.1063/1.5018140

N.P. Malomuzh, V.N. Makhlaichuk. Theory of self-diffusion in liquid metals. Rasplavy 5, 561 (2018) (in Russian).

N.P. Malomuzh, V.N. Makhlaychuk. Peculiarities of self-diffusion and shear viscosity in transition and post-transition metals. Rasplavy 5, 578 (2018) (in Russian).

V.M. Makhlaichuk. Shear viscosity of aqueous electrolyte solutions. Ukr. Fiz. Zh. (to be published) (in Ukrainian).

Published
2018-12-09
How to Cite
Malomuzh, M. (2018). Nature of Self-Diffusion in Fluids. Ukrainian Journal of Physics, 63(12), 1076. https://doi.org/10.15407/ujpe63.12.1076
Section
Physics of liquids and liquid systems, biophysics and medical physics