Physical Nature of Hydrogen Bond

  • I. V. Zhyganiuk Institute of Environmental Geochemistry, Nat. Acad. of Sci. of Ukraine
  • M. P. Malomuzh I.I. Mechnikov National University of Odessa
Keywords: hydrogen valence vibrations of a water molecule, frequency shift, hydrogen bond, electrostatic origin

Abstract

The physical nature and the correct definition of hydrogen bond (H-bond) are considered. The influence of H-bonds on the thermodynamic, kinetic, and spectroscopic properties of water is analyzed. The conventional model of H-bonds as sharply directed and saturated bridges between water molecules is incompatible with the behavior of the specific volume, evaporation heat, and self-diffusion and kinematic shear viscosity coefficients of water. On the other hand, it is shown that the variation of the dipole moment of a water molecule and the frequency shift of valence vibrations of a hydroxyl group can be totally explained in the framework of the electrostatic model of H-bond. At the same time, the temperature dependences of the heat capacity of water in the liquid and vapor states clearly testify to the existence of weak H-bonds. The analysis of a water dimer shows that the contribution of weak H-bonds to its ground state energy is approximately 4–5 times lower in comparison with the energy of electrostatic interaction between water molecules. A conclusion is made that H-bonds have the same nature in all other cases where they occur.

References

N.D. Sokolov, Usp. Fiz. Nauk 57, 205 (1955).

http://dx.doi.org/10.3367/UFNr.0057.195510d.0205

I.V. Zhyganiuk, Dopov. Nat. Akad. Nauk Ukr. N 8, 77 (2009).

I.V. Zhyganiuk, Ukr. Fiz. Zh. 56, 225, (2011).

M.D. Dolgushin and V.M. Pinchuk, Theoretical Study of the Nature of Hydrogen Bond by Means of Comparative Calculations, Preprint ITP-76-49R (Institute for Theoretical Physics, Kyiv, 1976) (in Russian).

R.L. Fulton and P. Perhacs, J. Phys. Chem. A 102, 9001 (1998).

http://dx.doi.org/10.1021/jp9821228

P. Barnes, J.L. Finney, J.D. Ncholas, and J.E. Quinn, Nature 282, 459 (1979).

http://dx.doi.org/10.1038/282459a0

H.C. Berendsen and G.A. van der Velde, in Proceedings of Workshop on Molecular Dynamics and Monte Carlo Calculations on Water in CECAM, edited by H.J.C. Berendsen (CECAM Orsay, 1972), p. 63.

E. Clementi and H. Popkie, J. Chem. Phys. 57, 1077 (1972).

http://dx.doi.org/10.1063/1.1678361

F.H. Stillinger and C.W. David, J. Chem. Phys. 69, 1473 (1978).

http://dx.doi.org/10.1063/1.436773

V.Ya. Antonchenko, A.S. Davydov, and V.V. Ilyin, Fundamentals of Physics of Water (Naukova Dumka, Kyiv, 1991) (in Russian).

W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, J. Chem. Phys. 79, 926 (1983).

http://dx.doi.org/10.1063/1.445869

V.I. Poltev, T.A. Grokhlina, and G.G. Malenkov, J. Biomolec. Struct. Dynam. 2, 413 (1984).

http://dx.doi.org/10.1080/07391102.1984.10507576

O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 1351 (1976).

http://dx.doi.org/10.1063/1.432402

J.O. Hirschfelder, Ch.F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967).

D. Eisenberg and W. Kautzman, The Structure and Properties of Water (Oxford Univ. Press, Oxford, 1968).

M. Rieth, Nano-Engineering in Science and Technology: An Introduction to the World of Nano-Design, edited by C. Politis and W. Schommers (World Scientific, Karlsruhe, 2003).

http://dx.doi.org/10.1142/5026

S.V. Lishchuk, N.P. Malomuzh, and P.V. Makhlaichuk, Phys. Lett. A 375, 2656 (2011).

http://dx.doi.org/10.1016/j.physleta.2011.05.049

L.A. Bulavin, Neutron Diagnostics of Liquid Matter State (Institute for Safety Problems of Nuclear Power Plants, Chornobyl, 2012) (in Ukrainian).

L.A. Bulavin, A.I. Fisenko, and N.P. Malomuzh, Chem. Phys. Lett. 453, 183 (2008).

http://dx.doi.org/10.1016/j.cplett.2008.01.028

N.A. Atamas, A.M. Yaremko, L.A. Bulavin, V.E. Pogorelov, S. Berski, Z. Latajka, H. Ratajczak, and A. AbkowiczBienko, J. Mol. Struct. 605, 187 (2002).

http://dx.doi.org/10.1016/S0022-2860(01)00762-1

I.I. Adamenko, L.A. Bulavin, V. Ilyin, S.A. Zelinsky, and K.O. Moroz, J. Mol. Liq. 127, 90 (2006).

http://dx.doi.org/10.1016/j.molliq.2006.03.023

A.I. Fisenko, N.P. Malomuzh, and A.V. Oleynik, Chem. Phys. Lett. 450, 297 (2008).

http://dx.doi.org/10.1016/j.cplett.2007.11.036

S.V. Lishchuk, N.P. Malomuzh, and P.V. Makhlaichuk, Phys. Lett. A 374, 2084 (2010).

http://dx.doi.org/10.1016/j.physleta.2010.02.070

N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, and K.N. Pankratov, J. Struct. Chem. 54, 205 (2013).

http://dx.doi.org/10.1134/S0022476613080039

I.V. Zhyganiuk and M.P. Malomuzh, Ukr. Fiz. Zh. 59, 1183 (2014).

E.W. Lemmon, M.O. McLinden, and D.G. Friend, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Inst. of Standards and Technology, Gaithersburg, MD, 2015) [http://webbook.nist.gov].

J. Naghizadeh and S.A. Rice, J. Chem. Phys. 36, 2710 (1962).

http://dx.doi.org/10.1063/1.1732357

R. Laghaei, A.E. Nasrabad, and Byung Chan Eu, J. Phys. Chem. B 109, 5873 (2005).

http://dx.doi.org/10.1021/jp0448245

L.A. Bulavin, I.V. Zhyganiuk, M.P. Malomuzh, and K.M. Pankratov, Ukr. Fiz. Zh. 56, 894 (2011).

J.C. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, and S.H. Lee, J. Phys. Chem. B 102, 4193 (1998).

http://dx.doi.org/10.1021/jp980642x

D. Hilbert, Theory of Algebraic Invariants (Cambridge Univ. Press, Cambridge, 1993).

P. Blanckenhagen, Ber. Bunsenges. Phys. Chem. 76, 891 (1972).

T.V. Lokotosh, N.P. Malomuzh, and K.N. Pankratov, J. Chem. Eng. Data 55, 2021 (2010).

http://dx.doi.org/10.1021/je9009706

D. McCall and D. Douglass, J. Phys. Chem. 69, 2001 (1965).

http://dx.doi.org/10.1021/j100890a034

E.R. Nightingale, J. Phys. Chem. 63, 1381 (1959).

http://dx.doi.org/10.1021/j150579a011

J.E. House, Inorganic Chemistry (Academic Press, San Diego, 2008).

Sheng-Bai Zhu, Surjit Singh, and G. Wilse Robinson, J. Chem. Phys. 95, 2791 (1991).

http://dx.doi.org/10.1063/1.460930

U. Buck and F. Huisken, Chem. Rev. 100, 3863 (2000).

http://dx.doi.org/10.1021/cr990054v

Yusuke Jin and Shun-ichi Ikawa, J. Chem. Phys. 119, 12432 (2003).

http://dx.doi.org/10.1063/1.1628667

K.M. Benjamin, A.J. Schultz, and D.A. Kofke, Ind. Eng. Chem. Res. 45, 5566 (2006).

http://dx.doi.org/10.1021/ie051160s

N. Goldman, R.S. Fellers, C. Leforestier, and R.J. Saykally, J. Phys. Chem. A 105, 515 (2001).

http://dx.doi.org/10.1021/jp003567a

T.V. Lokotosh, N.P. Malomuzh, and V.L. Zakharchenko, Zh. Strukt. Khim. 44, 1104 (2003).

N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, and K.N. Pankratov, Zh. Strukt. Khim. 54, S24 (2013).

A. Hantzsch, Ber. Deutsch. Chem. Ges. 43, 3049 (1910).

http://dx.doi.org/10.1002/cber.19100430369

W.M. Latimer and W.H. Rodebush, J. Amer. Chem. Soc. 42, 1419 (1920).

http://dx.doi.org/10.1021/ja01452a015

L. Pauling, J. Amer. Chem. Soc. 57, 2680 (1935).

http://dx.doi.org/10.1021/ja01315a102

T.V. Lokotosh and O.M. Gorun, Fiz. Nizk. Temp. 29, 179 (2003).

C.A. Croxton, Liquid State Physics: A Statistical Mechanical Introduction (Cambridge Univ. Press, Cambridge, 2009).

P.V. Makhlaichuk, M.P. Malomuzh, and I.V. Zhyganiuk, Ukr. Fiz. Zh. 57, 113 (2012).

H. Berendsen, J. Postma, W. Van Gunsteren, and J. Hermans, Intermolec. Forces 14, 331 (1981).

http://dx.doi.org/10.1007/978-94-015-7658-1_21

H.J.C. Berendsen, J.R. Grigera, and T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

http://dx.doi.org/10.1021/j100308a038

C. Weiss, C. Wagner, R. Temirov, and F.S. Tautz, J. Am. Chem.Soc. 132, 11864 (2010).

http://dx.doi.org/10.1021/ja104332t

Published
2019-01-15
How to Cite
Zhyganiuk, I., & Malomuzh, M. (2019). Physical Nature of Hydrogen Bond. Ukrainian Journal of Physics, 60(9), 960. https://doi.org/10.15407/ujpe60.09.0960
Section
General problems of theoretical physics