Kinematic Shear Viscosity of Water, Aqueous Solutions of Electrolytes, and Ethanol

  • V. M. Makhlaichuk I.I. Mechnikov National University of Odesa
Keywords: viscosity, water, ethanol

Abstract

The nature of the kinematic shear viscosity in associated (water and aqueous solutions of electrolytes) and strongly associated (alcohols) liquids has been studied. The behavior of the kinematic shear viscosity is shown to be governed by orientational correlations and the translational motion of molecules, which is characteristic of argon. The former mechanism dominates in the supercooled area and in normal states close to the triple point. The latter one is responsible for the viscosity at higher temperatures. The characteristic temperature tH separating those areas is found to be close to the triple point in the case of water and electrolyte aqueous solutions, and to the critical point in the case of ethanol. The agreement with experimental data is quite satisfactory.

References

D. Eisenberg and V. Kauzmann, The Structure and Properties of Water (Oxford Univ. Press, New York, 1969).

Byung Chan Eu, Transport Coefficients of Fluids (Springer, Berlin, 2011).

J.P. Hsu and S.H. Lin, J. Chem. Phys. 118, 172 (2003).

http://dx.doi.org/10.1063/1.1525282

J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955).

E.N. da C. Andrade, Nature 125, 309 (1930).

R. Casalini and C.M. Roland, J. Non-Cryst. Solids 353, 3936 (2007).

http://dx.doi.org/10.1016/j.jnoncrysol.2007.03.026

Yu. Pan, L.E. Boyd, J.F. Kruplak, W.E. Cleland, J.S. Wilkes, and Ch.L. Hussey, J. Electrochem. Soc. 158, F1 (2011).

http://dx.doi.org/10.1149/1.3505006

F.M. Gacino, X. Paredes, M.J.P. Comunas et al., J. Chem. Thermodyn. 62, 162, 2013.

http://dx.doi.org/10.1016/j.jct.2013.02.014

V. Blazhnov, N.P. Malomuzh, and S.V. Lishchuk, J. Chem. Phys. 121, 6435 (2004).

http://dx.doi.org/10.1063/1.1789474

L.A. Bulavin, A.I. Fisenko, and N.P. Malomuzh, Chem. Phys. Lett. 453, 183 (2008).

http://dx.doi.org/10.1016/j.cplett.2008.01.028

N.P. Malomuzh and V.P. Oleynik, Zh. Strukt. Khim. 49, 1055 (2008).

A.M. Zaitseva and I.Z. Fisher, Zh. Strukt. Khim. 4, 3 (1963).

I.Z. Fisher and A.M. Zaitseva, Zh. Strukt. Khim. 4, 331 (1963).

I.Z. Fisher and A.M. Zaitseva, Dokl. Akad. Nauk SSSR 154, 1175 (1964).

L.A. Bulavin, I.V. Zhyganiuk, M.P. Malomuzh, and K.M. Pankratov, Ukr. Fiz. Zh. 56, 894, (2011).

L.A. Bulavin, N.P. Malomuzh, and K.S.Shakun, Ukr. Fiz. Zh. 50, 653 (2005).

L.A. Bulavin, A.I. Fisenko, and N.P. Malomuzh, Chem. Phys. Lett. 183, 453(2008).

N.P. Malomuzh and V.P. Oleynik, J. Struct. Chem. (Russia) 49,1093 (2008).

N.P. Malomuzh, V.N. Makhlaichuk, P.V. Makhlaichuk, and K.N. Pankratov, Zh. Strukt. Khim. 54, Suppl. 1, S24, (2013).

H.R. Pruppacher, J. Chem. Phys. 56, 101 (1972).

http://dx.doi.org/10.1063/1.1676831

K. Yao, M. Okada, Y. Hiejima, H. Kohno, and Y. Kojihara, J. Chem. Phys. 110, 3026 (1999).

http://dx.doi.org/10.1063/1.478412

A.Z. Patashinskii and V.L. Pokrovsky, Fluctuation Theory of Phase Transitions (Pergamon Press, Oxford, 1982).

M. Nishio, Phys. Chem. Chem. Phys. 13, 13873 (2011).

http://dx.doi.org/10.1039/c1cp20404a

V.L. Kulinskii and N.P. Malomuzh, Phys. Rev. E 67, 011501 (2003).

http://dx.doi.org/10.1103/PhysRevE.67.011501

J. Kestin, H.E. Khalifa, and R.J. Correia, J. Phys. Chem. Ref. Data 10, 71 (1981).

http://dx.doi.org/10.1063/1.555641

C. Leforestiera, F. Gatti, R.S. Fellers, and R.J. Saykally, J. Chem. Phys. 117, 8710 (2002).

http://dx.doi.org/10.1063/1.1514977

R.M. Shields, B. Temelso, K.A. Archer, T.E. Morrell, and G.C. Shields, J. Phys. Chem. A 114, 11725 (2010).

http://dx.doi.org/10.1021/jp104865w

I.V. Zhyganiuk, Ph. D. thesis Microscopic Theory of Interaction between Water Molecules (Kyiv Univ., Kyiv, 2013) (in Ukrainian).

P.V. Makhlaichuk, Ph. D. thesis Role of Hydrogen Bonds in Formation of Water Properties (Odesa University, Odesa, 2013) (in Ukrainian).

S.V. Lishchuk, N.P. Malomuzh, and P.V. Makhlaichuk, Phys. Lett. A 374, 2084, (2010).

http://dx.doi.org/10.1016/j.physleta.2010.02.070

J. Kestin, J.V. Sengers, B. Kamgar-Parsi, and J.M.H. Levelt Sengers, J. Phys. Chem. Ref. Data 13, 175, (1984).

http://dx.doi.org/10.1063/1.555707

http://thermalinfo.ru/publ/zhidkosti/voda_i_rastvory/teplofizicheskie_svojstva_vod-nykh_rastvorov_khloristogo_natrija_i_kalcija/32-1-0-225.

P. Golub, I. Doroshenko, V. Pogorelov, V. Sablinskas, V. Balevicius, and J. Ceponkus, Papers Phys. 2013, 473294 (2013).

R.A. Provencal, R.N. Casaes, K. Roth, J.B. Paul, Ch.N. Chapo, and R.J. Saykally, J. Phys. Chem. A 104, 1423,(2000).

http://dx.doi.org/10.1021/jp9919258

B.G. Lone, P.B. Undre, S.S. Patil, P.W. Khirade, and S.C. Mehrotra, J. Mol. Liq. 141, 47, (2008).

http://dx.doi.org/10.1016/j.molliq.2008.03.001

V. Dyczmons, J. Phys. Chem. A 108, 2080, (2004).

http://dx.doi.org/10.1021/jp030930f

N.B. Vargaftik, Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures (Hemisphere, Washington, 1983).

Y. Tanaka, Y. Matsuda, H. Fujira, H. Kubota, and T. Makita, Int. J. Thermophys. 8, 147 (1987).

http://dx.doi.org/10.1007/BF00515199

M.J. Assael and S.K. Polimatidou, Int. J. Thermophys. 15, 95 (1994).

http://dx.doi.org/10.1007/BF01439248

S.V. Lishchuk, N.P. Malomuzh, and P.V. Makhlaichuk, Phys. Lett. A 375, 2656, (2011).

http://dx.doi.org/10.1016/j.physleta.2011.05.049

Published
2019-01-15
How to Cite
Makhlaichuk, V. (2019). Kinematic Shear Viscosity of Water, Aqueous Solutions of Electrolytes, and Ethanol. Ukrainian Journal of Physics, 60(9), 854. https://doi.org/10.15407/ujpe60.09.0854
Section
Soft matter