Qualitative Properties of the Shear Viscosity of Liquids

Authors

  • V. M. Makhlaichuk I.I. Mechnikov National University of Odesa

DOI:

https://doi.org/10.15407/ujpe63.11.986

Keywords:

self-diffusion coefficient, water viscosity

Abstract

In this paper, two theses are substantiated. (i) The viscosity of liquids in the larger part of the temperature interval, where this phase state exists, is governed by frictional effects between the molecular layers that move relative to one another. (ii) Argon and water at temperatures TH < T < TC (TH ≈ 315 K and TC is the corresponding critical temperature) have kinetic coefficients belonging to the same class of similarity. This is so because the behavior of the shear viscosity in water is driven by the averaged interaction potential between the molecules. On the basis of the similarity principle applied to the corresponding states of water and argon, the self-diffusion and shear viscosity coefficients of water are calculated. The inadequacy of activation mechanisms responsible for the formation of the viscosity and self-diffusion processes in water and most low-molecular liquids is discussed.

References

D. Eisenberg, V. Kauzmann. The Structure and Properties of Water (Oxford Univ. Press, 1969).

Byung Chan Eu. Transport Coefcients of Fluids (Springer, 2011).

J.P. Hsu, S.H. Lin. Temperature dependence of the viscosity of nonpolymeric liquids. J. Chem. Phys. 118, 172 (2003). https://doi.org/10.1063/1.1525282

J. Frenkel. Kinetic Theory of Liquids (Dover, 1955).

E.N. da C. Andrade. The viscosity of liquids. Nature 125, 309 (1930). https://doi.org/10.1038/125309b0

H. Eyring. Viscosity, plasticity, and difusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936). https://doi.org/10.1063/1.1749836

R.H. Ewell, H. Eyring. Theory of the viscosity of liquids as a function of temperature and pressure. J. Chem. Phys. 5, 726 (1937). https://doi.org/10.1063/1.1750108

R. Casalini, C.M. Roland. An equation for the description of volume and temperature dependences of the dynamics of supercooled liquids and polymer melts. J. Non-Cryst. Sol. 353, 3936 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.03.026

Y. Pan, L.E. Boyd, J.F. Kruplak, W.E. Cleland, Jr., J.S. Wilkes, C.L. Hussey. Physical and transport properties of bis(trifuoromethylsulfonyl)imide-based room-temperature ionic liquids: application to the difusion of tris(2,2′-bipyridyl)ruthenium(II). J. Electrochem. Soc. 158, F1 (2011). https://doi.org/10.1149/1.3505006

F.M. Gacino, X. Paredes, M.J.P. C. Josefa. Pressure dependence on the viscosities of 1-butyl-2,3-dimethylimidazolium bis(trifuoromethylsulfonyl)imide and two tris(pentafuoroethyl)trifuorophosphate based ionic liquids: New measurements and modelling. J. Chem. Therm. 62, 162 (2013). https://doi.org/10.1016/j.jct.2013.02.014

A. Batchinski. Untersuchungen ¨uber die innere Reibung der Flussigkeiten. Z. Phys. Chem. 84, 643 (1913).

P.V. Makhlaichuk, V.N. Makhlaichuk, N.P. Malomuzh. Nature of the kinematic shear viscosity of low-molecular liquids with averaged potential of Lennard-Jones type. J. Mol. Liq. 225, 577 (2017). https://doi.org/10.1016/j.molliq.2016.11.101

N.P. Malomuzh, I.Z. Fisher. On the collective nature of thermal motion in liquids. Fiz. Zhidk. Sost. No. 1, 33 (1973) (in Russian).

T.V. Lokotosh, N.P. Malomuzh. Lagrange theory of thermal hydrodynamic fuctuations and collective difusion in liquids. Physica A 286, 474 (2000). https://doi.org/10.1016/S0378-4371(00)00107-2

N.H. March, M.P. Tosi, Atomic Dynamics in Liquids (Dover, 1991).

L.A. Bulavin, T.V. Lokotosh, N.P. Malomuzh. Role of the collective self-difusion in water and other liquids. J. Mol. Liq. 137, 1 (2008). https://doi.org/10.1016/j.molliq.2007.05.003

M.P. Malomuzh, A.V. Oleinik, K.M. Pankratov. The nature of molecular self-difusion in argon and water. Ukr. J. Phys. 55, 1123 (2010).

N.P. Malomuzh, V.P. Oleynik. Nature of the kinematic shear viscosity of water. J. Struct. Chem. (Russia) 49, 1055 (2008). https://doi.org/10.1007/s10947-008-0178-1

A.I. Fisenko, N.P. Malomuzh, A.V. Oleynik. To what extent are thermodynamic properties of water argon-like? Chem. Phys. Lett. 450, 297 (2008). https://doi.org/10.1016/j.cplett.2007.11.036

V.Y. Gotsul'skii, N.P. Malomuzh, M.V. Timofeev, V.E. Chechko. Contraction of aqueous solutions of monoatomic alcohols. Russ. J. Phys. Chem. A 89, 51 (2015). https://doi.org/10.1134/S0036024415010070

T.V. Lokotosh, N.P. Malomuzh, K.N. Pankratov. Thermal motion in water + electrolyte solutions according to quasi-elastic incoherent neutron scattering data. J. Chem. Eng. Data 55, 2021 (2010). https://doi.org/10.1021/je9009706

L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008). https://doi.org/10.1016/j.cplett.2008.01.028

V.M. Makhlaichuk. Kinematic shear viscosity of water, aqueous electrolyte solutions, and ethanol. Ukr. Fiz. Zh. 60, 855 (2015) (in Ukrainian). https://doi.org/10.15407/ujpe60.09.0854

V.N. Makhlaichuk. Kinematic shear viscosity of liquid alkaline metals. Ukr. J. Phys. 62, 672, (2017). https://doi.org/10.15407/ujpe62.08.0672

V.Yu. Bardik, V.M. Makhlaichuk. Kinematic shear viscosity of pure liquid metals Sn, Bi, Pb and their binary melts. Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky No. 4, 179 (2017) (in Ukrainian).

V.P. Slusar, N.S. Rudenko, V.M. Tretyakov. Experimental study of the viscosity of simple liquids on the saturation line and under pressure. II Argon, Krypton, Xenon. Ukr. J. Phys. 17, 1257 (1972).

P. Heitjans, J. Karger. Difusion in Condensed Matter: Methods, Materials, Models (Springer, 2005). https://doi.org/10.1007/3-540-30970-5

T.V. Lokotosh, M.P. Malomuzh, K.M. Pankratov, K.S. Shakun. New results in the theory of collective self-difusion in liquids. Ukr. Fiz. Zh. 60, 697 (2015) (in Ukrainian).

V.S. Oskotskii. To the theory of quasi-elastic scattering of cold neutrons in liquid. Fiz. Tverd. Tela 5, 1082 (1963) (in Russian). L.A. Bulavin, P.G. Ivanitskii, V.G. Krotenko, V.N. Lyashkovskaya. Neutron studies of water self-difusion in aqueous electrolyte solutions. Zh. Fiz. Khim. 11, 3220 (1987) (in Russian).

L.A. Bulavin, A.A. Vasilkevich, A.K. Dorosh, P.G. Ianitsky, V.T. Krotenko, V.I. Slisenko. Self-difusion of water in aqueous solutions of single-charged electrolytes. Ukr. J. Phys. 31, 1703 (1986).

L.A. Bulavin, N.P. Malomuzh, K.N. Pankratov. Self-difusion in water. J. Struct. Chem. 47, S50 (2006). https://doi.org/10.1007/s10947-006-0377-6

P.V. Makhlaichuk. Clusterization processes in liquid water and saturated water vapor. In Abstracts of the 6th Intern. Conference on Physics of Liquid Matter: Modern Problems, May 23–27 (2014), p. 31.

N.P. Malomuzh, I.V. Zhyganiuk, M.V. Timofeev. Nature of H-bonds in water vapor. J. Mol. Liq. 242, 175 (2017). https://doi.org/10.1016/j.molliq.2017.06.127

M.V. Timofeev. Simulation of the interaction potential between water molecules. Ukr. J. Phys. 61, 893 (2016). https://doi.org/10.15407/ujpe61.10.0893

N.P. Malomuzh, M.V. Timofeev. Modelling of potentials for interparticle interactions between methanol molecules. Condens. Matter Phys. 20, 43301 (2017). https://doi.org/10.5488/CMP.20.43301

Published

2018-12-01

How to Cite

Makhlaichuk, V. M. (2018). Qualitative Properties of the Shear Viscosity of Liquids. Ukrainian Journal of Physics, 63(11), 986. https://doi.org/10.15407/ujpe63.11.986

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics