Shear Viscosity of Aqueous Electrolyte Solutions

  • V. M. Makhlaichuk I.I. Mechnikov National University of Odesa
Keywords: aqueous electrolyte solutions, kinematic shear viscosity, temperature dependence, concentration dependence

Abstract

The kinematic shear viscosity of aqueous electrolyte solutions has been studied. The temperature dependence of this parameter is shown to be described by an exponential formula at T < Td and a formula of the argon-like type at T > Td, where Td is the temperature of the dipole ordering, in the whole considered concentration interval. Main attention is focused on the peculiarities in the temperature and concentration dependences of the shear viscosity in the argon-like interval. It is shown that the root-like concentration dependence can appear, only if the Debye theory of dilute electrolyte solutions is applicable. Beyond its validity domain, the series expansion of the kinematic shear viscosity in the concentration parameter should have an analytical character. The latter behavior is inherent in the concentration dependence of the shear viscosity in the majority of experiments. The error of reproducing the experimental data did not exceed the experimental one, i.e. it was smaller than 4–5%.

References

L. Onsager, R.M. Fuoss. Irreversible processes in electrolytes. Diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 36, 2689 (1932). https://doi.org/10.1021/j150341a001

H. Falkenhagen. Bemerkung zur inneren Reibung starker Electrolyte in sehr verd?unnte L?osungen. Phys. Z. 32, 745 (1931).

H. Falkenhagen, E.L. Vernon. The viscosity of strong electrolyte solutions according to electrostatic theory. Philos. Mag. J. Sci. Ser. 7 14, No. 92, 537 (1932).

I.Z. Fisher, A.M. Zaitseva. Influence of ion hydration on the viscosity of electrolyte solutions. Zh. Strukt. Khim. 4, 331 (1963) (in Russian).

L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1 (Pergamon Press, 1980).

O.Ya. Samoilov. A new approach to the study of hydration of ions in aqueous solutions. Discuss. Faraday Soc. 24, 141 (1957). https://doi.org/10.1039/df9572400141

O.Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions (Consultants Bureau, 1965).

M.N. Rodnikova. Negative hydration of ions. Russ. J. Electrochem. 39, 192 (2003). https://doi.org/10.1023/A:1022317227140

M.N. Rodnikova, S.A. Zasypkin, G.G. Malenkov. On the mechanism of negative hydration. Dokl. Akad. Nauk SSSR 324, 368 (1992) (in Russian).

M.N. Rodnikova, S.A. Zasypkin, G.G. Malenkov. Structural and dynamic studies of Na+ and K+ water clusters. Zh. Strukt. Khim. 34, 96 (1993) (in Russian).

A. Einstein. Eine neue Bestimmung der Molek?uldimensionen. Ann. d. Phys. 19, 289 (1906). https://doi.org/10.1002/andp.19063240204

A. Einstein. A new determination of molecular dimensions. In Investigation on the Theory of the Brownian Movement. Edited by R. F?urth (Dover, 1956), p. 36.

Molecular Dynamics Method in Physical Chemistry. Edited by Yu.K. Tovbin (Nauka, 1996) (in Russian).

W. Peiming, A. Anderko. Modeling viscosity of aqueous and mixed-solvent electrolyte solutions. In Proceedings of the 14th International Conference on the Properties of Water and Steam (Kyoto, 2004), p. 116–121.

G. Hefter, P.M. May, P. Sipos, A. Stanley. Viscosity of concentrated electrolyte solutions. J. Mol. Liq. 103–104, 261 (2003). https://doi.org/10.1016/S0167-7322(02)00145-9

N.P. Malomuzh, V.P. Oleinik. Nature of the kinematic shear viscosity of water. Zh. Strukt. Khim. 49, 1092 (2008) (in Russian). https://doi.org/10.1007/s10947-008-0178-1

P.V. Makhlaichuk, V.N. Makhlaichuk, N.P. Malomuzh. Nature of the kinematic shear viscosity of low-molecular liquids with averaged potential of Lennard-Jones type. J. Mol. Liq. 225, 577 (2017). https://doi.org/10.1016/j.molliq.2016.11.101

L.A. Bulavin, N.P. Malomuzh. Upper temperature limit for the existence of living matter. J. Mol. Liq. 124, Iss. 1–3, 136 (2006). https://doi.org/10.1016/j.molliq.2005.11.027

T.V. Lokotosh, N.P. Malomuzh, K.N. Pankratov. Thermal motion in water-electrolyte solutions according to quasi- elastic incoherent neutron scattering data. J. Chem. Eng. Data 55, 2021 (2010). https://doi.org/10.1021/je9009706

L.A. Bulavin, A.I. Fisenko, N.P. Malomuzh. Surprising properties of the kinematic shear viscosity of water. Chem. Phys. Lett. 453, 183 (2008). https://doi.org/10.1016/j.cplett.2008.01.028

V.M. Makhlaichuk. Kinematic shear viscosity of water, aqueous solutions of electrolytes, and ethanol. Ukr. Fiz. Zh. 60, 855 (2015) (in Ukrainian). https://doi.org/10.15407/ujpe60.09.0854

V.M. Makhlaichuk. Kinematic shear viscosity of liquid alkaline metals. Ukr. Fiz. Zh. 62, 672 (2017) (in Ukrainian). https://doi.org/10.15407/ujpe62.08.0672

V.Yu. Bardik, V.M. Makhlaichuk. Kinematic shear viscosity of pure liquid metals Sn, Bi, Pb and their binary melts. Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky No. 4, 179 (2017) (in Ukrainian).

Published
2019-04-01
How to Cite
Makhlaichuk, V. (2019). Shear Viscosity of Aqueous Electrolyte Solutions. Ukrainian Journal of Physics, 64(3), 230. https://doi.org/10.15407/ujpe64.3.230
Section
Physics of liquids and liquid systems, biophysics and medical physics