A Pool Model of the Mediator Exocytosis into the Synapse

Authors

  • A. N. Vasilev Taras Shevchenko National University of Kyiv, Faculty of Physics, Chair of Theoretical Physics
  • O. M. Khvyl Taras Shevchenko National University of Kyiv, Faculty of Physics, Chair of Theoretical Physics

DOI:

https://doi.org/10.15407/ujpe64.9.829

Keywords:

neuron, synapse, mediator, presynaptic membrane

Abstract

A model describing the mediator release into a synaptic cleft and making allowance for the pool structure of the presynaptic region has been proposed. Namely, the presynaptic region is assumed to contain two pools with vesicles that accumulate the mediator. A nerve impulse stimulates the injection of mediator from the first pool into the synaptic cleft. Simultaneously, the mediator from the second pool diffuses into the first one. The replenishment of the second pool occurs by absorbing the mediator from the synaptic cleft. Various operational modes of this model are considered. In particular, specific features of the single-impulse transmission through the system are studied. The functioning of the system with a feedback (the output signal is supplied to the input of the system) is analyzed, and it is shown that, in this case, a parameter determining the feedback intensity has a critical character: at the parameter values not exceeding the critical value, the presence of feedback does not govern the functioning of the system at the qualitative level.

References

R.W. Holz, S.K.Fisher. Synaptic transmission and cellular signaling: An overview. In Basic Neurochemistry (Elsevier, 2012), p. 235. https://doi.org/10.1016/B978-0-12-374947-5.00012-2

T.C. S¨udhof, R.C.Malenka. Understanding synapses: past, present, and future. Neuron 60, 3, 469 (2008). https://doi.org/10.1016/j.neuron.2008.10.011

H.W. Davenport. Early history of the concept of chemical transmission of the nerve impulse. Physiologist 34, No. 4, 129 (1991).

T.C. S¨udhof. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509 (2004). https://doi.org/10.1146/annurev.neuro.26.041002.131412

R. Jahn. Principles of exocytosis and membrane fusion. Ann. New York Acad. Sci. 1014, 170 (2004). https://doi.org/10.1196/annals.1294.018

U. Becherer, J. Rettig. Vesicle pools, docking, priming and release. Cell Tiss. Res. 326, 393 (2006). https://doi.org/10.1007/s00441-006-0243-z

D. Bonanomi, F. Benfenati, F. Valtorta. Protein sorting in the synaptic vesicle life cycle. Prog. Neurobiol. 80, 177 (2006). https://doi.org/10.1016/j.pneurobio.2006.09.002

V.A. Klyachko, M.B. Jackson. Capacitance steps and fusion pores of small and large-dense-core vesicles in nerve terminals. Nature 418, 89 (2002). https://doi.org/10.1038/nature00852

J.Y. Sun, X.S. Wu, L.G. Wu. Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature 417, 555 (2002). https://doi.org/10.1038/417555a

C. Paillart, J. Li, G. Matthews, P. Sterling. Endocytosis and vesicle recycling at a ribbon synapse. J. Neurosci. 23, 4092 (2003). https://doi.org/10.1523/JNEUROSCI.23-10-04092.2003

T. Fernandez-Alfonso, T.A. Ryan. The kinetics of synaptic vesicle pool depletion at CNS synaptic terminals. Neuron 41, 943 (2004). https://doi.org/10.1016/S0896-6273(04)00113-8

D. Lenzi, J. Crum, M.H. Ellisman, W.M. Roberts. Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 36, 649 (2002). https://doi.org/10.1016/S0896-6273(02)01025-5

D. Zenisek, J.A. Steyer, M.E. Feldman, W. Almers. A membrane marker leaves synaptic vesicles in milliseconds after exocytosis in retinal bipolar cells. Neuron 35, 1085 (2002). https://doi.org/10.1016/S0896-6273(02)00896-6

E. Hanse, B. Gustafsson. Paired-pulse plasticity at the single release site level: An experimental and computational study. J. Neurosci. 21, 8362 (2001). https://doi.org/10.1523/JNEUROSCI.21-21-08362.2001

E. Hanse, B. Gustafsson. Release dependence to a paired stimulus at a synaptic release site with a small variable pool of immediately releasable vesicles. J. Neurosci. 22, 4381 (2002). https://doi.org/10.1523/JNEUROSCI.22-11-04381.2002

J. Trommershauser, R. Schneggenburger, A. Zippelius, E. Neher. Heterogeneous presynaptic release probabilities: Functional relevance for short-term plasticity. Biophys. J. 84, 1563 (2003). https://doi.org/10.1016/S0006-3495(03)74967-4

J.Y. Sun, L.G. Wu. Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30, 171 (2001). https://doi.org/10.1016/S0896-6273(01)00271-9

A. Llobet, V. Beaumont, L. Lagnado. Real-time measurement of exocytosis and endocytosis using interference of light. Neuron 40, 1075 (2003). https://doi.org/10.1016/S0896-6273(03)00765-7

A.V. Chalyi, L.M. Chernenko. Phase transition in finite-size systems and synaptic transmission. In Dynamical Phenomena at Interfaces, Surfaces and Membranes (Nova Science, 1993). p. 457.

A.V. Chalyi, A.N. Vasilev, E.V. Zaitseva. Synaptic transmission as a cooperative phenomenon in confined systems. Cond. Matter Phys. 20, 13804 (2017). https://doi.org/10.5488/CMP.20.13804

A.N. Vasilev, A.V. Kulish. The influence of mediator diffusion on the trigger mode of synapse functioning. Biofizika 59, 373 (2014) (in Russian). https://doi.org/10.1134/S0006350914020262

S.I. Braichenko, O.M. Vasilev. Modeling of postsynaptic membrane activation. Zh. Fiz. Dosl. 16, 4802 (2012) (in Ukrainian).

A.N. Vasilev, O.V. Kulish. Model of postsynaptic membrane deactivation. Ukr. J. Phys. 63, 919 (2018). https://doi.org/10.15407/ujpe63.10.919

O.V. Kulish, A.N. Vasilev. Modeling the nerve impulse transmission in a synaprtic cleft. J. Phys. Stud. 23, 1801 (2019). https://doi.org/10.30970/jps.23.1801

S.O. Rizzoli, W.J. Betz. Synaptic vesicle pools. Nature Rev. Neurosci. 6, 57 (2005). https://doi.org/10.1038/nrn1583

S.O. Rizzoli, W.J. Betz. The structural organization of the readily releasable pool of synaptic vesicles. Science 303, 2037 (2004). https://doi.org/10.1126/science.1094682

R. Schneggenburger, T. Sakaba, E. Neher. Vesicle pools and short-term synaptic depression: Lessons from a large synapse. Trends Neurosci. 25, 206 (2002). https://doi.org/10.1016/S0166-2236(02)02139-2

A.V. Chalyi, E.V. Zaitseva. Strange attractor in kinetic model of synaptic transmission. J. Phys. Stud. 11, 322 (2007).

O.V. Chalyi, O.V. Zaitseva. A kinetic model of synaptic transmission on intercell interaction. Ukr. J. Phys. 54, 366 (2009).

O.M. Vasilev, S.V. Kislyak. Two-pool kinetic model of synapse activation. Zh. Fiz. Dosl. 14, 4801 (2010) (in Ukrainian).

A.N. Vasilev, S.V. Kislyak. Model of mediator exocytosis into the synapse. Fiz. Zhiv. 18, No. 2, 47 (2010).

C.M. Anderson, R.A. Swanson. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32, 1 (2000). https://doi.org/10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W

A.K. Vidybida. Output stream of binding neuron with instantaneous feedback. Eur. Phys. J. B 65, 577 (2008). https://doi.org/10.1140/epjb/e2008-00360-1

A.K. Vidybida, K.G. Kravchuk. Output stream of binding neuron with delayed feedback. Eur. Phys. J. B 72, 279 (2009). https://doi.org/10.1140/epjb/e2009-00309-x

A.K. Vidybida. Activity of excitatory neuron with delayed feedback stimulated with Poisson stream is non-Markov. J. Stat. Phys. 160, 1507 (2015). https://doi.org/10.1007/s10955-015-1301-2

A.K. Vidybida. Fast Cl-type inhibitory neuron with delayed feedback has non-Markov output statistics. J. Phys. Stud. 22, 4801 (2018). https://doi.org/10.30970/jps.22.4801

Published

2019-10-11

How to Cite

Vasilev, A. N., & Khvyl, O. M. (2019). A Pool Model of the Mediator Exocytosis into the Synapse. Ukrainian Journal of Physics, 64(9), 829. https://doi.org/10.15407/ujpe64.9.829

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics