Analytical Approach for Calculating the Chemotaxis Sensitivity Function
DOI:
https://doi.org/10.15407/ujpe63.3.255Abstract
We consider the chemotaxis problem for a one-dimensional system. To analyze the interaction of bacteria and an attractant, we use a modified Keller–Segel model, which accounts for the attractant absorption. To describe the system, we use the chemotaxis sensitivity function, which characterizes the nonuniformity of the bacteria distribution. In particular, we investigate how the chemotaxis sensitivity function depends on the concentration of an attractant at the boundary of the system. It is known that, in the system without absorption, the chemotaxis sensitivity function has a bell shape maximum. Here, we show that the attractant absorption and special boundary conditions for bacteria can cause the appearance of an additional maximum in the chemotaxis sensitivity function. The value of this maximum is determined by the intensity of absorption.
References
<li>J.D. Murray. Mathematical Biology: I. An Introduction (Springer, 2007).
</li>
<li>H.C. Berg. E. coli in Motion (Springer, 2004).
<a href="https://doi.org/10.1007/b97370">https://doi.org/10.1007/b97370</a>
</li>
<li>J. Adler. Chemotaxis in bacteria. Science 153, 708 (1966).
<a href="https://doi.org/10.1126/science.153.3737.708">https://doi.org/10.1126/science.153.3737.708</a>
</li>
<li>R.M. Macnab, D.E. Koshland. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 69, 2509 (1972).
<a href="https://doi.org/10.1073/pnas.69.9.2509">https://doi.org/10.1073/pnas.69.9.2509</a>
</li>
<li>H.C. Berg, D.A. Brown. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500 (1972).
<a href="https://doi.org/10.1038/239500a0">https://doi.org/10.1038/239500a0</a>
</li>
<li>T. Namba, M. Nishikawa, T. Shibata. The relation of signal transduction to the sensitivity and dynamic range of bacterial chemotaxis. Biophys. J. 103, 1390 (2012).
<a href="https://doi.org/10.1016/j.bpj.2012.08.034">https://doi.org/10.1016/j.bpj.2012.08.034</a>
</li>
<li>B.A. Camley, J. Zimmermann, H. Levine, W.-J. Rappel. Emergent collective chemotaxis without single-cell gradient sensing. Phys. Rev. Lett. 116, 098101 (2016).
<a href="https://doi.org/10.1103/PhysRevLett.116.098101">https://doi.org/10.1103/PhysRevLett.116.098101</a>
</li>
<li>A. Geiseler, P. H?anggi, F. Marchesoni, C. Mulhern, S. Savel'ev. Chemotaxis of artificial microswimmers in active density waves. Phys. Rev. E 94, 012613 (2016).
<a href="https://doi.org/10.1103/PhysRevE.94.012613">https://doi.org/10.1103/PhysRevE.94.012613</a>
</li>
<li>S. Dev, S. Chatterjee. Optimal search in E. coli chemotaxis. Phys. Rev. E 91, 042714 (2015).
<a href="https://doi.org/10.1103/PhysRevE.91.042714">https://doi.org/10.1103/PhysRevE.91.042714</a>
</li>
<li> P. Romanczuk, G. Salbreux. Optimal chemotaxis in intermittent migration of animal cells. Phys. Rev. E 91, 042720 (2015).
<a href="https://doi.org/10.1103/PhysRevE.91.042720">https://doi.org/10.1103/PhysRevE.91.042720</a>
</li>
<li> M. Ebrahimian, M. Yekehzare, M.R. Ejtehadi. Low-Reynolds-number predator. Phys. Rev. E 92, 063035 (2015).
<a href="https://doi.org/10.1103/PhysRevE.92.063035">https://doi.org/10.1103/PhysRevE.92.063035</a>
</li>
<li> M. Leoni, P. Sens. Polarization of cells and soft objects driven by mechanical interactions: Consequences for migration and chemotaxis. Phys. Rev. E 91, 022720 (2015).
<a href="https://doi.org/10.1103/PhysRevE.91.022720">https://doi.org/10.1103/PhysRevE.91.022720</a>
</li>
<li> M. Meyer, L. Schimansky-Geier. Active Brownian agents with concentration-dependent chemotactic sensitivity. Phys. Rev. E 89, 022711 (2014).
<a href="https://doi.org/10.1103/PhysRevE.89.022711">https://doi.org/10.1103/PhysRevE.89.022711</a>
</li>
<li> J. Zhuang, G. Wei, R.W. Carlsen, M.R. Edwards, R. Marculescu, P. Bogdan, M. Sitti. Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens. Phys. Rev. E 89, 052704 (2014).
<a href="https://doi.org/10.1103/PhysRevE.89.052704">https://doi.org/10.1103/PhysRevE.89.052704</a>
</li>
<li> T. Sagawa, Y. Kikuchi, Y. Inoue, H. Takahashi, T. Muraoka, K. Kinbara, A. Ishijima, H. Fukuoka. Single-cell E.coli response to an instantaneously applied chemotactic signal. Biophys. J. 10, 730 (2014).
<a href="https://doi.org/10.1016/j.bpj.2014.06.017">https://doi.org/10.1016/j.bpj.2014.06.017</a>
</li>
<li> Y. Tu, T.S. Shimizu, H.C. Berg. Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc. Natl. Acad. Sci. USA 105, 14855 (2008).
<a href="https://doi.org/10.1073/pnas.0807569105">https://doi.org/10.1073/pnas.0807569105</a>
</li>
<li> D.A. Clark, L.C. Grant. The bacterial chemotactic response rejects a compromise between transient and steady-state behavior. Proc. Natl. Acad. Sci. USA 102, 9150 (2005).
<a href="https://doi.org/10.1073/pnas.0407659102">https://doi.org/10.1073/pnas.0407659102</a>
</li>
<li> P.G. de Gennes. Chemotaxis: The role of internal delays. Eur. Biophys. J. 33, 691 (2004).
<a href="https://doi.org/10.1007/s00249-004-0426-z">https://doi.org/10.1007/s00249-004-0426-z</a>
</li>
<li> R. Tyson, S.R. Lubkin, J.D. Murray. A minimal mechanism of bacterial pattern formation. Proc. Roy. Soc. Lond. B 266, 299 (1999).
<a href="https://doi.org/10.1098/rspb.1999.0637">https://doi.org/10.1098/rspb.1999.0637</a>
</li>
<li> E.O. Budrene, H. Berg. Complex patterns formed by motile cells of Escherichia coli. Nature 376, 49 (1995).
<a href="https://doi.org/10.1038/376049a0">https://doi.org/10.1038/376049a0</a>
</li>
<li> E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirok, T. Vicsek. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46 (1994).
<a href="https://doi.org/10.1038/368046a0">https://doi.org/10.1038/368046a0</a>
</li>
<li> M.J. Schnitzer. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553 (1993).
<a href="https://doi.org/10.1103/PhysRevE.48.2553">https://doi.org/10.1103/PhysRevE.48.2553</a>
</li>
<li> E.F. Keller, L.A. Segel. Travelling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235 (1971).
<a href="https://doi.org/10.1016/0022-5193(71)90051-8">https://doi.org/10.1016/0022-5193(71)90051-8</a>
</li>
<li> E. Keller, L. Segel. Model for chemotaxis. J. Theor. Biol. 30, 225 (1971).
<a href="https://doi.org/10.1016/0022-5193(71)90050-6">https://doi.org/10.1016/0022-5193(71)90050-6</a>
</li>
<li> E. Keller, L. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399 (1970).
<a href="https://doi.org/10.1016/0022-5193(70)90092-5">https://doi.org/10.1016/0022-5193(70)90092-5</a>
</li>
<li> M.J. Tindall, S.K. Porter, P.K. Maini, G. Gaglia, J.P. Armitage. Overview of mathematical approaches used to model bacterial chemotaxis. II: Bacterial populations. Bull. Math. Biol. 70, 1570 (2008).
<a href="https://doi.org/10.1007/s11538-008-9322-5">https://doi.org/10.1007/s11538-008-9322-5</a>
</li>
<li> F.J. Peaudecerf, R.E. Goldstein. Feeding ducks, bacterial chemotaxis, and the Gini index. Phys. Rev. E 92, 022701 (2015).
<a href="https://doi.org/10.1103/PhysRevE.92.022701">https://doi.org/10.1103/PhysRevE.92.022701</a>
</li>
<li> M. Hilpert. Lattice-Boltzmann model for bacterial chemotaxis. J. Math. Biol. 51, 302 (2005).
<a href="https://doi.org/10.1007/s00285-005-0318-6">https://doi.org/10.1007/s00285-005-0318-6</a>
</li>
<li> C. Chiu, F. Hoppensteadt. Mathematical models and simulations of bacterial growth and chemotaxis in a diffusion gradient chamber. J. Math. Biol. 42, 120 (2001).
<a href="https://doi.org/10.1007/s002850000069">https://doi.org/10.1007/s002850000069</a>
</li>
<li> K. Chen, R. Ford, P. Cummings. Mathematical models for motile bacterial transport in cylindrical tubes. J. Theor. Biol. 195, 481 (1998).
<a href="https://doi.org/10.1006/jtbi.1998.0808">https://doi.org/10.1006/jtbi.1998.0808</a>
</li>
<li> M. Widman, D. Emerson, C. Chiu, R. Worden. Modelling microbial chemotaxis in a diffusion gradient chamber. Biotech. Bioeng. 55, 191 (1997).
<a href="https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<191::AID-BIT20>3.0.CO;2-O">https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<191::AID-BIT20>3.0.CO;2-O</a>
</li>
<li> R. Lapidus, R. Schiller. Model for the chemotactic response of a bacterial population. Biophys. J. 16, 779 (1976).
<a href="https://doi.org/10.1016/S0006-3495(76)85728-1">https://doi.org/10.1016/S0006-3495(76)85728-1</a>
</li>
<li> R. Lapidus, R. Schiller. Bacterial chemotaxis in a fixed attractant gradient. J. Theor. Biol. 53, 215 (1975).
<a href="https://doi.org/10.1016/0022-5193(75)90112-5">https://doi.org/10.1016/0022-5193(75)90112-5</a>
</li>
<li> R. Lapidus, R. Schiller. A mathematical model for bacterial chemotaxis. Biophys. J. 14, 825 (1974).
<a href="https://doi.org/10.1016/S0006-3495(74)85952-7">https://doi.org/10.1016/S0006-3495(74)85952-7</a>
</li></ol>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.