Analytical Approach for Calculating the Chemotaxis Sensitivity Function

  • A. N. Vasilev Taras Shevchenko National University of Kyiv, Department of Theoretical Physics, Physics Faculty

Abstract

We consider the chemotaxis problem for a one-dimensional system. To analyze the interaction of bacteria and an attractant, we use a modified Keller–Segel model, which accounts for the attractant absorption. To describe the system, we use the chemotaxis sensitivity function, which characterizes the nonuniformity of the bacteria distribution. In particular, we investigate how the chemotaxis sensitivity function depends on the concentration of an attractant at the boundary of the system. It is known that, in the system without absorption, the chemotaxis sensitivity function has a bell shape maximum. Here, we show that the attractant absorption and special boundary conditions for bacteria can cause the appearance of an additional maximum in the chemotaxis sensitivity function. The value of this maximum is determined by the intensity of absorption.

References


  1. J.D. Murray. Mathematical Biology: I. An Introduction (Springer, 2007).

  2. H.C. Berg. E. coli in Motion (Springer, 2004).
    https://doi.org/10.1007/b97370

  3. J. Adler. Chemotaxis in bacteria. Science 153, 708 (1966).
    https://doi.org/10.1126/science.153.3737.708

  4. R.M. Macnab, D.E. Koshland. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 69, 2509 (1972).
    https://doi.org/10.1073/pnas.69.9.2509

  5. H.C. Berg, D.A. Brown. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 500 (1972).
    https://doi.org/10.1038/239500a0

  6. T. Namba, M. Nishikawa, T. Shibata. The relation of signal transduction to the sensitivity and dynamic range of bacterial chemotaxis. Biophys. J. 103, 1390 (2012).
    https://doi.org/10.1016/j.bpj.2012.08.034

  7. B.A. Camley, J. Zimmermann, H. Levine, W.-J. Rappel. Emergent collective chemotaxis without single-cell gradient sensing. Phys. Rev. Lett. 116, 098101 (2016).
    https://doi.org/10.1103/PhysRevLett.116.098101

  8. A. Geiseler, P. H?anggi, F. Marchesoni, C. Mulhern, S. Savel'ev. Chemotaxis of artificial microswimmers in active density waves. Phys. Rev. E 94, 012613 (2016).
    https://doi.org/10.1103/PhysRevE.94.012613

  9. S. Dev, S. Chatterjee. Optimal search in E. coli chemotaxis. Phys. Rev. E 91, 042714 (2015).
    https://doi.org/10.1103/PhysRevE.91.042714

  10. P. Romanczuk, G. Salbreux. Optimal chemotaxis in intermittent migration of animal cells. Phys. Rev. E 91, 042720 (2015).
    https://doi.org/10.1103/PhysRevE.91.042720

  11. M. Ebrahimian, M. Yekehzare, M.R. Ejtehadi. Low-Reynolds-number predator. Phys. Rev. E 92, 063035 (2015).
    https://doi.org/10.1103/PhysRevE.92.063035

  12. M. Leoni, P. Sens. Polarization of cells and soft objects driven by mechanical interactions: Consequences for migration and chemotaxis. Phys. Rev. E 91, 022720 (2015).
    https://doi.org/10.1103/PhysRevE.91.022720

  13. M. Meyer, L. Schimansky-Geier. Active Brownian agents with concentration-dependent chemotactic sensitivity. Phys. Rev. E 89, 022711 (2014).
    https://doi.org/10.1103/PhysRevE.89.022711

  14. J. Zhuang, G. Wei, R.W. Carlsen, M.R. Edwards, R. Marculescu, P. Bogdan, M. Sitti. Analytical modeling and experimental characterization of chemotaxis in Serratia marcescens. Phys. Rev. E 89, 052704 (2014).
    https://doi.org/10.1103/PhysRevE.89.052704

  15. T. Sagawa, Y. Kikuchi, Y. Inoue, H. Takahashi, T. Muraoka, K. Kinbara, A. Ishijima, H. Fukuoka. Single-cell E.coli response to an instantaneously applied chemotactic signal. Biophys. J. 10, 730 (2014).
    https://doi.org/10.1016/j.bpj.2014.06.017

  16. Y. Tu, T.S. Shimizu, H.C. Berg. Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc. Natl. Acad. Sci. USA 105, 14855 (2008).
    https://doi.org/10.1073/pnas.0807569105

  17. D.A. Clark, L.C. Grant. The bacterial chemotactic response rejects a compromise between transient and steady-state behavior. Proc. Natl. Acad. Sci. USA 102, 9150 (2005).
    https://doi.org/10.1073/pnas.0407659102

  18. P.G. de Gennes. Chemotaxis: The role of internal delays. Eur. Biophys. J. 33, 691 (2004).
    https://doi.org/10.1007/s00249-004-0426-z

  19. R. Tyson, S.R. Lubkin, J.D. Murray. A minimal mechanism of bacterial pattern formation. Proc. Roy. Soc. Lond. B 266, 299 (1999).
    https://doi.org/10.1098/rspb.1999.0637

  20. E.O. Budrene, H. Berg. Complex patterns formed by motile cells of Escherichia coli. Nature 376, 49 (1995).
    https://doi.org/10.1038/376049a0

  21. E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirok, T. Vicsek. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46 (1994).
    https://doi.org/10.1038/368046a0

  22. M.J. Schnitzer. Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553 (1993).
    https://doi.org/10.1103/PhysRevE.48.2553

  23. E.F. Keller, L.A. Segel. Travelling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol. 30, 235 (1971).
    https://doi.org/10.1016/0022-5193(71)90051-8

  24. E. Keller, L. Segel. Model for chemotaxis. J. Theor. Biol. 30, 225 (1971).
    https://doi.org/10.1016/0022-5193(71)90050-6

  25. E. Keller, L. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399 (1970).
    https://doi.org/10.1016/0022-5193(70)90092-5

  26. M.J. Tindall, S.K. Porter, P.K. Maini, G. Gaglia, J.P. Armitage. Overview of mathematical approaches used to model bacterial chemotaxis. II: Bacterial populations. Bull. Math. Biol. 70, 1570 (2008).
    https://doi.org/10.1007/s11538-008-9322-5

  27. F.J. Peaudecerf, R.E. Goldstein. Feeding ducks, bacterial chemotaxis, and the Gini index. Phys. Rev. E 92, 022701 (2015).
    https://doi.org/10.1103/PhysRevE.92.022701

  28. M. Hilpert. Lattice-Boltzmann model for bacterial chemotaxis. J. Math. Biol. 51, 302 (2005).
    https://doi.org/10.1007/s00285-005-0318-6

  29. C. Chiu, F. Hoppensteadt. Mathematical models and simulations of bacterial growth and chemotaxis in a diffusion gradient chamber. J. Math. Biol. 42, 120 (2001).
    https://doi.org/10.1007/s002850000069

  30. K. Chen, R. Ford, P. Cummings. Mathematical models for motile bacterial transport in cylindrical tubes. J. Theor. Biol. 195, 481 (1998).
    https://doi.org/10.1006/jtbi.1998.0808

  31. M. Widman, D. Emerson, C. Chiu, R. Worden. Modelling microbial chemotaxis in a diffusion gradient chamber. Biotech. Bioeng. 55, 191 (1997).
    https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<191::AID-BIT20>3.0.CO;2-O

  32. R. Lapidus, R. Schiller. Model for the chemotactic response of a bacterial population. Biophys. J. 16, 779 (1976).
    https://doi.org/10.1016/S0006-3495(76)85728-1

  33. R. Lapidus, R. Schiller. Bacterial chemotaxis in a fixed attractant gradient. J. Theor. Biol. 53, 215 (1975).
    https://doi.org/10.1016/0022-5193(75)90112-5

  34. R. Lapidus, R. Schiller. A mathematical model for bacterial chemotaxis. Biophys. J. 14, 825 (1974).
    https://doi.org/10.1016/S0006-3495(74)85952-7
Published
2018-04-20
How to Cite
Vasilev, A. (2018). Analytical Approach for Calculating the Chemotaxis Sensitivity Function. Ukrainian Journal of Physics, 63(3), 255. https://doi.org/10.15407/ujpe63.3.255
Section
Physics of liquids and liquid systems, biophysics and medical physics