Analysis of Synaptic Signal Transmission Based on a Kinetic Model

Authors

  • O.M. Vasyliev Taras Shevchenko National University of Kyiv
  • O.V. Zaitseva O.O. Bogomolets National Medical University
  • O.V. Chalyi O.O. Bogomolets National Medical University

DOI:

https://doi.org/10.15407/ujpe69.1.37

Keywords:

synapse, mediator, receptor, exocytosis, impulse

Abstract

We will analyze the peculiarities of the nerve signal transmission through a synaptic cleft (a contact between two neurons). The corresponding analysis is performed using a kinetic model that is based on a system of nonlinear differential equations of the first order and makes it possible to calculate the number of activated receptors on the postsynaptic membrane and the amount of mediator in the synaptic cleft. The model combines simplicity and functionality, which allows obtaining the qualitative results comparable to available experimental data and the results of other theoretical studies. It has been shown that the model correctly describes the process of signal transmission through the synaptic cleft at a qualitative level. Exact (numerical) and approximate (analytic) solutions for the number of activated receptors on the postsynaptic membrane and the amount of a mediator in the synaptic cleft are obtained and analyzed. The stability of stationary states is considered and proved in the framework of the proposed model, which confirms the self-consistency of the model and the possibility of its use for simulating the signal transmission through the synapse.

References

A.L. Hodgkin, A.F. Huxley. A quantitative description of membrane current and its application to conduction and 507 excitation in nerve. J. Physiol. 117, 500 (1952).

https://doi.org/10.1113/jphysiol.1952.sp004764

B. Katz, R. Miledi. The measurement of synaptic delay, and the time course of acetylcholine release at the 516 neuromuscular junction. Proc. R. Soc. Lond. B Bio. 161, 483 (1965).

https://doi.org/10.1098/rspb.1965.0016

Z.M. Bacq. Chemical Transmission of Nerve Impulses: A Historical Sketch (Pergamon, 1975).

https://doi.org/10.1016/B978-0-08-020512-0.50009-9

H.W. Davenport. Early history of the concept of chemical transmission of the nerve impulse. Physiologist 34, 129 (1991).

A.V. Chalyi, L.M. Chernenko. Phase transition in finitesize systems and synaptic transmission. In: Dynamical Phenomena at Interfaces, Surfaces, and Membranes (Nowa Science Publishers, 1993), p. 457.

T.C. S¨udhof, R.C. Malenka. Understanding synapses: Past, present, and future. Neuron 60, 469 (2008).

https://doi.org/10.1016/j.neuron.2008.10.011

M.R. Bennett. History of the Synapse (Harwood Academic Publishers, 2001).

https://doi.org/10.4324/9780203302545

S.O. Rizzoli, W.J. Betz. Synaptic vesicle pools. Nature Rev. Neurosci. 6, 57 (2005).

https://doi.org/10.1038/nrn1583

B. Wang, O.K. Dudko. A theory of synaptic transmission. eLife 10, e73585 (2021).

https://doi.org/10.7554/eLife.73585

D.G. Aronson, H.F. Weinberger. Nonlinear diffusion in population genetics, combustion and nerve pulse propagation. In: Partial Differential Equations and Related Topics. Edited by J.A. Goldstein (Springer, 1975), p. XXXXX.

https://doi.org/10.1007/BFb0070595

P. Grindrod. The Theory and Applications of ReactionDiffusion Equations (Clarendon Press, 1996).

D.A. Gavryushenko, K.V. Cherevko, V.M. Sysoev. The influence of the chemical reactions on the diffusion phenomena in the cylincrical systems bounded with the membranes. J. Mol. Liq. 127, 1 (2006).

https://doi.org/10.1016/j.molliq.2006.03.018

K.V. Cherevko, D.A. Gavryushenko, O.V. Korobko, V.M. Sysoev. Entropy production in the diffusion of a Margules solution in a flat-parallel pore. Ukr. J. Phys. 58, 10 (2013).

https://doi.org/10.15407/ujpe58.10.0988

K.V. Cherevko, D.A. Gavryushenko, L.A. Bulavin. Entropy production in a model biological system with facilitated diffusion Ukr. J. Phys. 66, 8 (2021).

https://doi.org/10.15407/ujpe66.8.714

J. Trommershauser, R. Schneggenburger, A. Zippelius, E. Nehery. Heterogeneous presynaptic release probabilities: Functional relevance for short-term plasticity. Biophys. J. 84, 1563 (2003).

https://doi.org/10.1016/S0006-3495(03)74967-4

J. Lichtenberger, P. Fromherz. A cell-semiconductor synapse: Transistor recording of vesicle release in chromaffin cells. Biophys. J. 92, 2266 (2007).

https://doi.org/10.1529/biophysj.106.096446

K. Zheng, A. Scimemi, D.A. Rusakov. Receptor actions of synaptically released glutamate: The role of transporters on the scale from nanometers to microns. Biophys. J. 95, 4584 (2008).

https://doi.org/10.1529/biophysj.108.129874

E. Neher. What is rate-limiting during sustained synaptic activity: Vesicle supply or the availability of release sites. Frontier. Synapt. Neurosci. 2, 144 (2010).

https://doi.org/10.3389/fnsyn.2010.00144

P.S. Kaeser, W.G. Regehr. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76, 333 (2014).

https://doi.org/10.1146/annurev-physiol-021113-170338

D.H. Kweon, B. Kong, Y.K. Shin. Hemifusion in synaptic vesicle cycle. Frontier. Mol. Neurosci. 10, 65 (2017).

https://doi.org/10.3389/fnmol.2017.00065

M.V. Gramlich, V.A. Klyachko. Nanoscale organization of vesicle release at central synapses. Trend. Neurosci. 42, 425 (2019).

https://doi.org/10.1016/j.tins.2019.03.001

R.W. Holz, S.K. Fisher. Synaptic transmission and cellular signaling: An overview. In: Basic Neurochemistry (Elsevier, 2012), p. 235.

https://doi.org/10.1016/B978-0-12-374947-5.00012-2

A.V. Chalyi, E.V. Zaitseva. Strange attractor in kinetic model of synaptic transmission. J. Phys. Stud. 11, 322 (2007).

https://doi.org/10.30970/jps.11.322

O.V. Chalyi, O.V. Zaitseva. A kinetic model of synaptic transmission on intercell interaction. Ukr. J. Phys. 54, 366 (2009).

A.N. Vasilev, A.V. Chalyi. Cooperative operation mode of a synaptic channel. Ukr. J. Phys. 54, 1183 (2009).

O.M. Vasiliev, S.V. Kyslyak. Two-pool kinetic model of synapse activation. J. Phys. Res. 14, 4801 (2010).

https://doi.org/10.30970/jps.14.4801

SI. Braychenko, O.M. Vasiliev. Modeling the activation of the postsynaptic membrane. J. Phys. Res. 16, 4802 (2012).

https://doi.org/10.30970/jps.16.4802

A.V. Chalyi, A.N. Vasilev, E.V. Zaitseva. Synaptic transmission as a cooperative phenomenon in confined systems. Condens. Matter Phys. 20, 13804 (2017).

https://doi.org/10.5488/CMP.20.13804

O.M. Vasiliev, O.M. Hvyl. Pool model of mediator exocytosis into the synapse. Ukr. J. Phys. 64, 9 (2019).

https://doi.org/10.15407/ujpe64.9.829

O.V. Kulish, A.N. Vasilev. Modeling the nerve impuls transmission in a synaptic cleft. J. Phys. Stud. 23, 1 (2019).

https://doi.org/10.30970/jps.23.1801

S.Yu. Ushcats, M.V. Ushcats, V.M. Sysoev, D.A. Gavryushenko. Approximation of cluster integrals for various lattice-gas models. Ukr. J. Phys. 63, 12 (2019).

https://doi.org/10.15407/ujpe63.12.1066

L.A. Bulavin, K.V. Cherevko, D.A. Gavryushenko, V.M. Sysoev, T.S. Vlasenko. Radiation influence on the temperature-dependent parameters of fluids. Phys. Rev. E 93, 3 (2016).

https://doi.org/10.1103/PhysRevE.93.032133

A.V. Chalyi, A.N. Vasil'ev. Correlation properties, critical parameters and critical light scattering in finite-size systems. J. Mol. Liq. 84, 2 (2000).

https://doi.org/10.1016/S0167-7322(99)00187-7

A.V. Chalyi, K.A. Chaliy, L.M. Chernenko, A.N. Vasil'ev. Critical phenomena in finite-size binary liquid mixtures with reduced geometry. J. Mol. Liq. 93, 1 (2001).

https://doi.org/10.1016/S0167-7322(01)00219-7

Published

2024-02-06

How to Cite

Vasyliev, O., Zaitseva, O., & Chalyi, O. (2024). Analysis of Synaptic Signal Transmission Based on a Kinetic Model. Ukrainian Journal of Physics, 69(1), 37. https://doi.org/10.15407/ujpe69.1.37

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)