Influence of Cholesterol Concentration on Bacteriorhodopsin Photocycle

Authors

  • L. A. Bulavin Taras Shevchenko National University of Kyiv
  • A. E. Mikhailov Moscow Institute of Physics and Technology
  • P. K. Kuzmichev Moscow Institute of Physics and Technology
  • V. V. Chupin Moscow Institute of Physics and Technology
  • V. I. Borshchevskiy Moscow Institute of Physics and Technology
  • I. V. Chizhov Medizinische Hochschule Hannover
  • D. V. Soloviov Moscow Institute of Physics and Technology, Institute for Safety Problems of Nuclear Power Plants, Nat. Acad. of Sci. of Ukraine, Joint Institute for Nuclear Research

DOI:

https://doi.org/10.15407/ujpe65.9.778

Keywords:

laser photolysis, lipid membranes, photocycle, bacteriorhodopsin, cholesterol

Abstract

The photocycle of the membrane protein bacteriorhodopsin in Dipalmitoylphosphatidylcholine(DPPC)/Cholesterol membranes with various cholesterol concentrations has been studied using the time-resolved spectroscopy method. The temperature dependences of the rate constants of bacteriorhodopsin transitions between transient states are shown to satisfy the Eyring equation. It is proved that the growth of the cholesterol concentration in the DPPC membrane accelerates the bacteriorhodopsin photocycle.

References

L.A. Bulavin, D.V. Soloviov, Yu.E. Gorshkova et al. Structural transition in a lipid-water liquid system. Ukr. J. Phys. 57, No. 6, 623 (2012).

J. Eisenbl¨atter, R.Winter. Pressure effects on the structure and phase behavior of dmpc-gramicidin lipid bilayers: A synchrotron SAXS and 2H-NMR spectroscopy study. Biophys. J. 90, 956 (2006). https://doi.org/10.1529/biophysj.105.069799

C. Bernsdorff, A. Wolf, R. Winter et al. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Biophys. J. 72, 1265 (1997). https://doi.org/10.1016/S0006-3495(97)78773-3

D.V. Soloviov, L.A. Bulavin, V.I. Gordeliy et al. Neutron scattering investigations of the lipid bilayer structure pressure dependence. Nucl. Phys. At. Energ. 13, No. 1, 83 (2012).

D.V. Soloviov, Y.E. Gorshkova, O.I. Ivankov et al. Ripple phase behavior in mixtures of DPPC/POPC lipids: SAXS and SANS studies. J. Phys. Conf. Ser. 351, 012010 (2012). https://doi.org/10.1088/1742-6596/351/1/012010

D. Soloviov, Y. Zabashta, L. Bulavin et al. Changes in the area per lipid molecule by P-V-T and SANS investigations. Macromol. Symp. 335, 58 (2014). https://doi.org/10.1002/masy.201200122

Y.E. Gorshkova, A.I. Kuklin,V.I. Gordeliy. Structure and phase transitions of DMPC multilamellar vesicles in the presence of Ca2+ ions. J. Surf. Investig. X-ray Synchrot. Neutr. Techn. 11, 27 (2017). https://doi.org/10.1134/S1027451016050499

L.A. Bulavin, D.V. Soloviov, A.I. Kuklin et al. Small-angle X-ray scattering and differential scanning calorimetry studies of DPPC multilamellar structures containing membranotropic agents of different chemical nature. Ukr. J. Phys. 60, 905 (2015).

L.A. Bulavin, D.V. Soloviov, V.I. Gordeliy et al. Lyotropic model membrane structures of hydrated (DPPC: DSC and small-angle X-ray scattering studies of phase transitions in the presence of membranotropic agents. Phase Trans. 88, 582 (2015). https://doi.org/10.1080/01411594.2014.1002784

A.O. Krasnikova, N.A. Kasian, O.V. Vashchenko et al. Effect of oxyethilated glycerol cryoprotectants on DPPC model lipid membranes structure and phase. Probl. Cryobiol. Cryomed. 25, No. 2, 186 (2015). https://doi.org/10.15407/cryo25.02.186

O.V. Vashchenko, S.V. Shishkina, N.A. Kasian et al. Formation of antibiotic cycloserine complexes with stearic acid and its calcium and magnesium salts: From quantum mechanical modeling to studies of membranotropic action. Funct. Mater. 26, 673 (2019). https://doi.org/10.15407/fm26.04.673

M. Zhernenkov, D. Bolmatov, D. Soloviov et al. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations. Nature Commun. 7, 11575 (2016). https://doi.org/10.1038/ncomms11575

D. Soloviov, Y.Q. Cai, D. Bolmatov et al. Functional lipid pairs as building blocks of phase-separated membranes. Proc. Natl. Acad. Sci. U.S.A. 117, 4749 (2020). https://doi.org/10.1073/pnas.1919264117

M. Bogdanov, E. Mileykovskaya, W. Dowhan et al. Lipids in the assembly of membrane proteins and organization of protein supercomplexes: Implications for lipid-linked disorders. In: Lipids in Health and Disease. Edited by P.J. Quinn, Xiaoyuan Wang (Springer, 2008), SCBI, 49 pp. 197-239. https://doi.org/10.1007/978-1-4020-8831-5_8

O.I. Ivankov, E.V. Ermakova, T.N. Murugova et al. Interactions in the Model Membranes Mimicking Preclinical Conformational Diseases (Elsevier, 2020) [ISBN: 2451-9634]. https://doi.org/10.1016/bs.abl.2020.02.002

N. Ntarakas, I. Ermilova, A.P. Lyubartsev et al. Effect of lipid saturation on amyloid-beta peptide partitioning and aggregation in neuronal membranes: Molecular dynamics simulations. Eur. Biophys. J. 48, 813 (2019). https://doi.org/10.1007/s00249-019-01407-x

M. Javanainen, H. Martinez-Seara, I. Vattulainen. Nanoscale membrane domain formation driven by cholesterol. Sci. Rep. 7, 1143 (2017). https://doi.org/10.1038/s41598-017-01247-9

B.L. Stottrup, S.L. Keller. Phase behavior of lipid monolayers containing DPPC and cholesterol analogs. Biophys. J. 90, 3176 (2006). https://doi.org/10.1529/biophysj.105.072959

J.H. Ipsen, G. Karlstr¨om, O. Mourtisen et al. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905, 162 (1987). https://doi.org/10.1016/0005-2736(87)90020-4

O. Edholm, J.F. Nagle. Areas of molecules in membranes consisting of mixtures. Biophys. J. 89, 1827 (2005). https://doi.org/10.1529/biophysj.105.064329

I. Chizhov, D.S. Chernavskii, M. Engelhard et al. Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys. J. 71, 2329 (1996). https://doi.org/10.1016/S0006-3495(96)79475-4

D. Bratanov, K. Kovalev, J.-P. Machten et al. Unique structure and function of viral rhodopsins. Nature Commun. 10, 4939 (2019). https://doi.org/10.1038/s41467-019-12718-0

I. Chizhov, G. Schmies, R. Seidel et al. The photophobic receptor from Natronobacterium pharaonis: temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophys. J. 75, 999 (1998). https://doi.org/10.1016/S0006-3495(98)77588-5

I.V. Chizhov. Flash photolysis. In Encyclopedia of Biophysics (Springer, 2013) [ISBN: 978-3-642-16712-6]. https://doi.org/10.1007/978-3-642-16712-6_63

K.H. M¨uller, T. Plesser. Variance reduction by simultaneous multi-exponential analysis of data sets from different experiments. Eur. Biophys. J. 19, 241 (1991). https://doi.org/10.1007/BF00183531

T. Hianik, V.I. Passechnik. Bilayer Lipid Membranes. Structure and Mechanical Properties (Springer Sci. and Business Media, 1995) [ISBN: 0792335511].

Published

2020-08-26

How to Cite

Bulavin, L. A., Mikhailov, A. E., Kuzmichev, P. K., Chupin, V. V., Borshchevskiy, V. I., Chizhov, I. V., & Soloviov, D. V. (2020). Influence of Cholesterol Concentration on Bacteriorhodopsin Photocycle. Ukrainian Journal of Physics, 65(9), 778. https://doi.org/10.15407/ujpe65.9.778

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

1 2 3 4 5 6 > >>