Maximization of the Olfactory Receptor Neuron Selectivity in the Sub-Threshold Regime

Authors

  • A.K. Vidybida Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.4.266

Keywords:

olfactory receptor neuron, selectivity, sub-threshold regime, fluctuations

Abstract

It is known that if odors are presented to an olfactory receptor neuron (ORN) in a sub-threshold concentration – i.e., when the average value of the number of the ORN bound receptor proteins (RPs) is insufficient for the generation of spikes, but such a generation is still possible due to fluctuations around the average value – the ORN selectivity can be higher than the selectivity at higher concentrations and, in particular, higher than the selectivity of the ORN’s RPs. In this work, the optimal odorant concentration providing the highest ORN selectivity is found in the framework of a simplified ORN model, and the dependence of the highest selectivity on the total number of RPs in the ORN, N, and its threshold value N0 is derived. The effect of enhanced selectivity in the sub-threshold regime is best manifested, if N0 is close to either unity or N. It is also more pronounced at large N-values.

References

K.J. Ressler, S.L. Sullivan, L.B. Buck. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245 (1994).

https://doi.org/10.1016/0092-8674(94)90015-9

A. Duchamp. Electrophysiological responses of olfactory bulb neurons to odour stimuli in the frog. a comparison with receptor cells. Chem. Sens. 7, 191 (1982).

https://doi.org/10.1093/chemse/7.2.191

W. Rall, G.M. Shepherd. Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J, Neurophysiol. 31, 884 (1968).

https://doi.org/10.1152/jn.1968.31.6.884

A.K. Vidybida. Possible stochastic mechanism for improving the selectivity of olfactory projection neurons. Neurophysiology 51, 152 (2019).

https://doi.org/10.1007/s11062-019-09808-6

J.G. Hildebrand, G.M. Shepherd. Mechanisms of olfactory discrimination: Converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595 (1997).

https://doi.org/10.1146/annurev.neuro.20.1.595

L.B. Buck. The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611 (2000).

https://doi.org/10.1016/S0092-8674(00)80698-4

B. Malnic, J. Hirono, T. Sato, L.B. Buck. Combinatorial receptor codes for odors. Cell 96, 713 (1999).

https://doi.org/10.1016/S0092-8674(00)80581-4

A. Vidybida. Harnessing thermal fluctuations for selectivity gain. In 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) (2022), p. 1.

https://doi.org/10.1109/ISOEN54820.2022.9789678

C.G. Galizia, D. Munch, M. Strauch, A. Nissler, Shouwen Ma. Integrating heterogeneous odor response data into a common response model: A door to the complete olfactome. Chem. Sens. 35, 551 (2010).

https://doi.org/10.1093/chemse/bjq042

A.B. Lamine, Y. Bouazra. Application of statistical thermodynamics to the olfaction mechanism. Chem. Sens. 22, 67 (1997).

https://doi.org/10.1093/chemse/22.1.67

K. Sato, M. Pellegrino, T. Nakagawa, T. Nakagawa, L.B. Vosshall, K. Touhara. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002 (2008).

https://doi.org/10.1038/nature06850

G.V. Ronnett, Ch. Moon. G proteins and olfactory signal transduction. Annu. Rev. Physiol. 64, 189 (2002).

https://doi.org/10.1146/annurev.physiol.64.082701.102219

A. Menini, C. Picco, S. Firestein. Quantal-like current fluctuations induced by odorants in olfactory receptor cells. Nature 373, 435 (1995).

https://doi.org/10.1038/373435a0

M. Chastrette, T. Thomas-Danguin, E. Rallet. Modelling the human olfactory stimulus-response function. Chem. Sens. 23, 181 (1998).

https://doi.org/10.1093/chemse/23.2.181

B.V. Gnedenko. Theory of Probability. 6th Edition (CRC Press, 1998).

K-E Kaissling. Olfactory perireceptor and receptor events in moths: A kinetic model. Chem. Sens. 26, 125 (2001).

https://doi.org/10.1093/chemse/26.2.125

E. Williams, A. Dewan. Olfactory detection thresholds for primary aliphatic alcohols in mice. Chem. Sens. 45, 513 (2020).

https://doi.org/10.1093/chemse/bjaa045

V. Bhandawat, J. Reisert, K-W Yau. Signaling by olfactory receptor neurons near threshold. Proc. Nat. Acad. Sci. USA 107, 18682 (2010).

https://doi.org/10.1073/pnas.1004571107

A. Nagashima, K. Touhara. Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor reception. J. Neurosci. 30, 16391 (2010).

https://doi.org/10.1523/JNEUROSCI.2527-10.2010

B. Bryche, C. Baly, N. Meunier. Modulation of olfactory signal detection in the olfactory epithelium: focus on the internal and external environment, and the emerging role of the immune system. Cell Tissue Res. 384, 589 (2021).

https://doi.org/10.1007/s00441-021-03467-y

K. Persaud, G. Dodd. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299, 352 (1982).

https://doi.org/10.1038/299352a0

B. Raman, M. Stopfer, S. Semancik. Mimicking biological design and computing principles in artificial olfaction. ACS Chem. Neurosci. 2, 487 (2011).

https://doi.org/10.1021/cn200027r

C. Hurot, N. Scaramozzino, A. Buhot, Y. Hou. Bio-inspired strategies for improving the selectivity and sensitivity of artificial noses: A review. Sensors 20, 1803 (2020).

https://doi.org/10.3390/s20061803

I.S. Kucherenko, O.O. Soldatkin, S.V. Dzyadevych, A.P. Soldatkin. Electrochemical biosensors based on multienzyme systems: Main groups, advantages and limitations - a review. Analyt. Chim. Acta 1111, 114 (2020).

https://doi.org/10.1016/j.aca.2020.03.034

S. Kim, R. Lee, D. Kwon, T-H. Kim, T.J. Park, S-J. Choi, H-S. Mo, D.H. Kim, B-G. Park. Multiplexed silicon nanowire tunnel fet-based biosensors with optimized multisensing currents. IEEE Sensor. J. 21, 8839 (2021).

https://doi.org/10.1109/JSEN.2021.3054052

G. Antunes, A.M. Sebasti˜ao, F.M.S. de Souza. Mechanisms of regulation of olfactory transduction and adaptation in the olfactory cilium. PLOS Comput. Biol. 9, e105531 (2014).

https://doi.org/10.1371/journal.pone.0105531

J. Joseph, F.A. Dunn, M. Stopfer. Spontaneous olfactory receptor neuron activity determines follower cell response properties. J. Neurosci. 32, 2900 (2012).

https://doi.org/10.1523/JNEUROSCI.4207-11.2012

J. Smulko, C-G. Granqvist, L.B. Kish. On the statistical analysis of noise in chemical sensors and its application for sensing. Fluct. Noise Lett. 01, L147 (2001).

https://doi.org/10.1142/S0219477501000366

G. Scandurra, J. Smulko, L.B. Kish. Fluctuation-enhanced sensing (FES): A promising sensing technique. Appl. Sci. 10, 5818 (2020).

https://doi.org/10.3390/app10175818

Published

2023-06-14

How to Cite

Vidybida, A. (2023). Maximization of the Olfactory Receptor Neuron Selectivity in the Sub-Threshold Regime. Ukrainian Journal of Physics, 68(4), 266. https://doi.org/10.15407/ujpe68.4.266

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics