FTIR and DSC Studies of Binary Mixtures of Long-Chain Aliphatic Compounds: Lauric Acid – Cetyl-trimethylammonium Bromide
DOI:
https://doi.org/10.15407/ujpe63.5.413Keywords:
catanionic complexes, lauric acid, CTAB, DSC, FTIRAbstract
Structural and thermal properties of a solid-state binary mixture of long-chain cationic and anionic surfactants (so-called catanionic complexes) composed of cetyltrimethyl-ammonium bromide, [H3C–(CH2)15–N+(CH3)3]Br−(CTAB), and saturated fatty acid (FA), CH3(CH2)12COOH (lauric acid, kC12), are studied. To clarify the effect of intermolecular interactions on the crystalline structure and phase transitions in this class of supramolecular compounds, the 1 : 1 kC12-CTAB binary mixture is investigated by means of X-ray diffraction, differential scanning calorimetry (DSC), and temperature-variable Fourier transform infrared spectroscopy (FTIR). Based on the comparison of the obtained results with those of other CTAB-FA binary mixtures with different alkyl chain length mismatches, the possible molecular packing in the crystal phase of CTAB-FA complexes and the mechanism of successive phase transitions in the condensed state are proposed.
References
<li>P. Jokela, B. Jonsson, A. Khan. Phase equilibria of catanionic surfactant-water systems. J. Phys. Chem. 91, 13291 (1987).
<a href="https://doi.org/10.1021/j100296a037">https://doi.org/10.1021/j100296a037</a>
</li>
<li>E. Marques, A. Khan,M. Miguel, B. Lindman. Self-assembly in mixtures of a cationic and an anionic surfactant: The sodium dodecyl sulfate-didodecyldimethylammonium bromide-water system. J. Phys. Chem. 97, 4729 (1993).
<a href="https://doi.org/10.1021/j100120a028">https://doi.org/10.1021/j100120a028</a>
</li>
<li>P.A. Hassan, S.R. Raghavan, E.W. Kaler. Microstructural changes in SDS micelles induced by hydrotropic salt. Langmuir 18 (7), 2543 (2002).
<a href="https://doi.org/10.1021/la011435i">https://doi.org/10.1021/la011435i</a>
</li>
<li>N. Vlachy, A. Renoncourt, M. Drechsler, J.-M. Verbavatz, D. Touraud, W. Kunz. Blastulae aggregates: New intermediate structures in the micelle-to-vesicle transition of catanionic systems. J. Colloid and Interface Sci. 320 (1), 360 (2008).
<a href="https://doi.org/10.1016/j.jcis.2007.12.034">https://doi.org/10.1016/j.jcis.2007.12.034</a>
</li>
<li>E.W. Kaler, K.L. Herrington, K. Marthy, J.A. Zasadzink. Phase behavior and structures of mixtures of anionic and cationic surfactants. J. Phys. Chem. 96 (16), 6698 (1992).
<a href="https://doi.org/10.1021/j100195a033">https://doi.org/10.1021/j100195a033</a>
</li>
<li>N. Dew, T. Bramer, K. Edsman. Catanionic aggregates formed from drugs and lauric or capric acids enable prolonged release from gels. J. Colloid and Interface Sci. 323 (2), 386 (2008).
<a href="https://doi.org/10.1016/j.jcis.2008.04.008">https://doi.org/10.1016/j.jcis.2008.04.008</a>
</li>
<li>N. Hassan, J.M. Ruso, A. Pi?neiro. Hydrogenated/fluorinated catanionic surfactants as potential templates for nanostructure design. Langmuir 27 (16), 9719 (2011).
<a href="https://doi.org/10.1021/la2019346">https://doi.org/10.1021/la2019346</a>
</li>
<li>D. Ramimoghadam, M.Z. Bin Hussein, Y.H. Taufiq-Yap. The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. Int. J. Mol. Sci. 13 (10), 13275 (2012).
<a href="https://doi.org/10.3390/ijms131013275">https://doi.org/10.3390/ijms131013275</a>
</li>
<li>H.H. Mantsch, S.F. Weng, P.W. Yang, H.H. Eysel. Structure and thermotropic phase behavior of sodium and potassium carboxylate ionomers. J. Molec. Structure 324 (1–2), 133 (1994).
<a href="https://doi.org/10.1016/0022-2860(93)08234-U">https://doi.org/10.1016/0022-2860(93)08234-U</a>
</li>
<li> M. Antonietti. Surfactants for novel templating applications. Current Opin. Colloid Interf. Sci. 6 (3), 244(2001).
<a href="https://doi.org/10.1016/S1359-0294(01)00089-9">https://doi.org/10.1016/S1359-0294(01)00089-9</a>
</li>
<li> Organized Monolayers and Assemblies: Structure, Processes and Function. Edited by D. Mobius, R. Miller (Elsevier Science, 2002).
</li>
<li> T.A. Gavrilko, V.I. Styopkin, T.V. Bezrodna, G.O. Puchkovska, J. Baran, M. Drozd. Molecular dynamics and phase transitions behavior of binary mixtures of fatty acids and cetyltrimethylammonium bromide as studied via davydov splitting of molecular vibrational modes. Ukr. J. Phys. 58 (7), 636 (2013).
<a href="https://doi.org/10.15407/ujpe58.07.0636">https://doi.org/10.15407/ujpe58.07.0636</a>
</li>
<li> J. Baran, M. Drozd, T.A. Gavrilko, V.I. Styopkin. Structure, molecular dynamics, and thermotropic properties of stearic acid-CTAB catanionic surfactants with different molar ratios. Ukr. J. Phys. 59 (3), 303 (2014).
<a href="https://doi.org/10.15407/ujpe59.03.0303">https://doi.org/10.15407/ujpe59.03.0303</a>
</li>
<li> E. von Sydow. On the structure of crystal form A of lauric acid. Acta Chem. Scand. 10 (1), 1 (1956).
<a href="https://doi.org/10.3891/acta.chem.scand.10-0001">https://doi.org/10.3891/acta.chem.scand.10-0001</a>
</li>
<li> V. Toma?sic, S. Popovic, N. Filipovic-Vincekovic. Solid state transitions of asymmetric catanionic surfactants. J. Colloid and Interface Sci. 215 (2), 280 (1999).
<a href="https://doi.org/10.1006/jcis.1999.6234">https://doi.org/10.1006/jcis.1999.6234</a>
</li>
<li> M.L. Lynch, F.Wireko, M. Tarek, M. Klein. Intermolecular interactions and the structure of fatty acid-soap crystals. J. Phys. Chem. B 105 (2), 552 (2001).
<a href="https://doi.org/10.1021/jp002602a">https://doi.org/10.1021/jp002602a</a>
</li>
<li> N. Filipovic-Vincekovic, I. Pucic, S. Popovic, V. Toma?sic, D. Te?zak. Solid-phase transitions of catanionic surfactants. J. Colloid and Interface Sci. 188 (2), 396 (1997).
<a href="https://doi.org/10.1006/jcis.1997.4767">https://doi.org/10.1006/jcis.1997.4767</a>
</li>
<li> K. Iwamoto, Y. Ohnuki, K. Sawada, M. Seno. Solid-solid phase transitions of long-chain n-alkyltrimethylammonium halides. Mol. Cryst. Liq. Cryst. 73 (1–2), 95 (1981).
<a href="https://doi.org/10.1080/00268948108076264">https://doi.org/10.1080/00268948108076264</a>
</li>
<li> G.D. Saraiva, C.E.S. Nogueira, P.T.C. Freire, F.F. Sousa, J.H. Silva, A.M.R. Teixeira, J. Mendes Filho. Temperature-dependent vibrational spectroscopic study and DFT calculations of the sorbic acid. Spectrochimica Acta Part A 137, 1409 (2015).
<a href="https://doi.org/10.1016/j.saa.2014.08.142">https://doi.org/10.1016/j.saa.2014.08.142</a>
</li>
<li> F.F. Sousa, P.T.C. Freire, A.S. Menezes, G.S. Pinheiro, L.P. Cardoso, Jr.P. Alcantara, S.G.C. Moreira, F.E.A. Melo, J. Mendes Filho, G.D. Saraiva. Low-temperature phase transformation studies in the stearic acid: C form. Spectrochimica Acta Part A 148 (9), 280 (2015).
<a href="https://doi.org/10.1016/j.saa.2015.04.003">https://doi.org/10.1016/j.saa.2015.04.003</a>
</li>
<li> R.G. Snyder, S.L. Hsu, S. Krimm. Vibrational spectra in the CH stretching region and the structure of the polymethylene chain. Spectrochimica Acta A 34 (4), 395(1978).
<a href="https://doi.org/10.1016/0584-8539(78)80167-6">https://doi.org/10.1016/0584-8539(78)80167-6</a>
</li>
<li> L.J. Bellami. The Infra-Red Spectra of Complex Molecules, Vol. 1 (Wiley, 1975).
<a href="https://doi.org/10.1007/978-94-011-6017-9">https://doi.org/10.1007/978-94-011-6017-9</a>
</li>
<li> G.O. Puchkovska. Manifestation of structure, dynamics, and polymorphism in vibrational spectra of molecular crystals. Thesis of the Doctoral Dissertation in Phys. and Math. (Kyiv, 1988).
</li>
<li> G.O. Puchkovska, S.P. Makarenko, V.D. Danchuk, A.P. Kravchuk. Temperature study of resonance intermolecular interaction in normal long-chain carboxylic acid crystals using IR absorption spectra. J. Molec. Struct. 744–747, 53 (2005).
<a href="https://doi.org/10.1016/j.molstruc.2005.01.002">https://doi.org/10.1016/j.molstruc.2005.01.002</a>
</li>
<li> E.B. Sirota, H.E. King Jr., D.M. Singer, H.S. Shao. Rotator phases of the normal alkanes: An X-ray scattering study. J. Chem. Phys. 98 (7), 5809 (1993).
<a href="https://doi.org/10.1063/1.464874">https://doi.org/10.1063/1.464874</a>
</li>
<li> C. Sun, M.J. Bojdys, S.M. Clarke, L.D. Harper, A. Jefferson, M.A. Castro, S. Medina. Bulk and adsorbed monolayer phase behavior of binary mixtures of undecanoic acid and undecylamine: Catanionic monolayers. Langmuir 27 (7), 3626 (2011).
<a href="https://doi.org/10.1021/la1048198">https://doi.org/10.1021/la1048198</a></li>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.