Molecular Dynamics and Phase Transitions Behavior of Binary Mixtures of Fatty Acids and Cetyltrimethylammonium Bromide as Studied via Davydov Splitting of Molecular Vibrational Modes

Authors

  • T. A. Gavrilko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • G. O. Puchkovska Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. I. Styopkin Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • T. V. Bezrodna Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • J. Baran Institute of Low Temperatures and Structure Research, PAN
  • M. Drozd Institute of Low Temperatures and Structure Research, PAN

DOI:

https://doi.org/10.15407/ujpe58.07.0636

Keywords:

FTIR spectroscopy, X-ray diffraction, DSC, CTAB, fatty acids, supramolecular complex

Abstract

The 1:1 solid phase complexes of stearic (SA) and behenic (BA) fatty acids (FA) with cationic surfactant cetyltrimethylammonium bromide (CTAB) are prepared from an equimolar ethanol solution of their binary mixtures. A supramolecular complexation between FA and CTAB molecules is proven with FTIR spectroscopy, X-ray diffraction (XRD), and differential scanning calorimetry (DSC). A single-phase layered crystalline structure of both CTAB:SA and CTAB:BA complexes is revealed by XRD. The greatly enhanced thermal stability of the CTAB:FA complexes over the pure FA (by about 40–50oC) is found with DSC along with a number of successive solid-solid phase transitions. The temperature-dependent FTIR study of the Davydov splitting for CH2 rocking (720–730 cm^-1) vibrations revealed a significant difference in the conformational disorder of methylene chains and the molecular packing in successive solid phases of CTAB:SA and CTAB:BA complexes. Our research provides a molecular basis for a prospective application of such class of binary mixtures of oppositely charged cationic and anionic surfactants in thermo-sensitive supramolecular systems.

References

<ol>
<li> D. Kopetzki, Y. Michina, T. Gustavsson, and D. Carriere, Soft Matter 5, 4212 (2009).
&nbsp;<a href="https://doi.org/10.1039/b907339f">https://doi.org/10.1039/b907339f</a>
</li>
<li> Th. Zemb, D. Carriere, K. Glinel, M. Hartman, A. Meister, Cl. Vautrin, N. Delorme, A. Fery, and M. Dubois, Colloid Surface A 303, 37 (2007).
&nbsp;<a href="https://doi.org/10.1016/j.colsurfa.2007.03.028">https://doi.org/10.1016/j.colsurfa.2007.03.028</a>
</li>
<li> A. Stocco, D. Carriere, M. Cottat, and D. Langevin, Langmuir 26, 10663 (2010).
&nbsp;<a href="https://doi.org/10.1021/la100954v">https://doi.org/10.1021/la100954v</a>
</li>
<li> M. Dubois, D. Carriere, R. Iyer, M. Arunagirinathan, J. Bellare, J. Verbavatz, and T. Zemb, Colloid Surface A 319, 90 (2008).
</li>
<li> E. Maurer, L. Belloni, T. Zemb, and D. Carriere, Langmuir 23, 6554 (2007).
&nbsp;<a href="https://doi.org/10.1021/la070184w">https://doi.org/10.1021/la070184w</a>
</li>
<li> G. Andreatta, J.-J. Benattara, R. Petkova, J.Y.J. Wang, P. Tong, A. Polidori, and B. Pucci, Colloid Surface A 321, 211 (2008).
</li>
<li> Y. Lu, R. Gangull, C. Drewlen, M. Anderson, C. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. Huang, and J. Zink, Nature 389, 364 (1997).
&nbsp;<a href="https://doi.org/10.1038/38699">https://doi.org/10.1038/38699</a>
</li>
<li> S. Biswas, S.A. Hussain, S. Deb, R.K. Nath, and D. Bhattacharjee, Spectrochim. Acta A 65, 628 (2006).
&nbsp;<a href="https://doi.org/10.1016/j.saa.2005.12.021">https://doi.org/10.1016/j.saa.2005.12.021</a>
</li>
<li> V. Tomasi’c, S. Popovi’c, and N. Filipovic-Vincekovi’c, J. Colloid Interf. Sci. 215, 280 (1999).
&nbsp;<a href="https://doi.org/10.1006/jcis.1999.6234">https://doi.org/10.1006/jcis.1999.6234</a>
</li>
<li> M.L. Lynch, F. Wireko, M. Tarek, and M. Klein, J. Phys. Chem. B 105, 552 (2001).
&nbsp;<a href="https://doi.org/10.1021/jp002602a">https://doi.org/10.1021/jp002602a</a>
</li>
<li> N. Filipovic-Vincekovi’c, I. Puci’c, S. Popovi’c, V. Tomasi’c, and D. Tezak, J. Colloid Interf. Sci. 188, 396 (1997).
&nbsp;<a href="https://doi.org/10.1006/jcis.1997.4767">https://doi.org/10.1006/jcis.1997.4767</a>
</li>
<li> J.B. Peng, G.T. Barnes, and I.R. Gentle, Adv. Colloid Interf. Sci. 91, 163 (2001).
&nbsp;<a href="https://doi.org/10.1016/S0001-8686(99)00031-7">https://doi.org/10.1016/S0001-8686(99)00031-7</a>
</li>
<li> B.F.B. Silva, E.F. Marques, U. Olsson, and R. Pons, Langmuir 26, 3058 (2010).
&nbsp;<a href="https://doi.org/10.1021/la902963k">https://doi.org/10.1021/la902963k</a>
</li>
<li> B. Tah, P. Pal, M. Mahato, and G.B. Talapatra, J. Phys. Chem. B 115, 8493 (2011).
&nbsp;<a href="https://doi.org/10.1021/jp202578s">https://doi.org/10.1021/jp202578s</a>
</li>
<li> T. Bezrodna, G. Puchkovska, V. Styopkin, and J. Baran, Thin Solid Films 517, 1759 (2009).
&nbsp;<a href="https://doi.org/10.1016/j.tsf.2008.10.008">https://doi.org/10.1016/j.tsf.2008.10.008</a>
</li>
<li> T. Bezrodna, G. Puchkovska, V. Styopkin, J. Baran, M. Drozd, V. Danchuk, and A. Kravchuk, J. Molec. Struct. 973, 47 (2010).
&nbsp;<a href="https://doi.org/10.1016/j.molstruc.2010.03.018">https://doi.org/10.1016/j.molstruc.2010.03.018</a>
</li>
<li> S.P. Makarenko, G.A. Puchkovska, E.N. Kotelnikova, and S.K. Filatov, J. Molec. Struct. 704, 25 (2004).
&nbsp;<a href="https://doi.org/10.1016/j.molstruc.2004.01.046">https://doi.org/10.1016/j.molstruc.2004.01.046</a>
</li>
<li> G.O. Puchkovska, S.P. Makarenko, V.D. Danchuk, and A.P. Kravchuk, J. Molec. Struct. 744–747, 53 (2005).
&nbsp;<a href="https://doi.org/10.1016/j.molstruc.2005.01.002">https://doi.org/10.1016/j.molstruc.2005.01.002</a>
</li>
<li> L.J. Bellami, The Infra-Red Spectra of Complex Molecules (Wiley, New York, 1958).
</li>
<li> W. Wu, Y. Wang, and H.-S. Wang, Vib. Spectrosc. 46, 158 (2008).
&nbsp;<a href="https://doi.org/10.1016/j.vibspec.2007.12.012">https://doi.org/10.1016/j.vibspec.2007.12.012</a>
</li>
<li> A. Imanishi, R. Omoda, and Y. Nakato, Langmuir 22, 1706 (2006).
&nbsp;<a href="https://doi.org/10.1021/la052495h">https://doi.org/10.1021/la052495h</a>
</li>
<li> G.O. Puchkovska, V.D. Danchuk, A.P. Kravchuk, and J.I. Kukielski, J. Molec. Struct. 704, 119 (2004).
&nbsp;<a href="https://doi.org/10.1016/j.molstruc.2003.12.063">https://doi.org/10.1016/j.molstruc.2003.12.063</a>
</li>
<li> D. Hadˇzi, J. Grdadolnik, and A. Meden, J. Molec. Struct. 381, 9 (1996).
</li>
<li> A.S. Davydov, Theory of Molecular Excitons (Plenum Press, New York, 1971).
&nbsp;<a href="https://doi.org/10.1007/978-1-4899-5169-4">https://doi.org/10.1007/978-1-4899-5169-4</a>
</li>
<li> E.B. Sirota, H.E. King, jr., D.M. Singer, and H.S. Shao, J. Chem. Phys. 98, 5809 (1993).
&nbsp;<a href="https://doi.org/10.1063/1.464874">https://doi.org/10.1063/1.464874</a>
</li>

</ol>

Downloads

Published

2018-10-10

How to Cite

Gavrilko, T. A., Puchkovska, G. O., Styopkin, V. I., Bezrodna, T. V., Baran, J., & Drozd, M. (2018). Molecular Dynamics and Phase Transitions Behavior of Binary Mixtures of Fatty Acids and Cetyltrimethylammonium Bromide as Studied via Davydov Splitting of Molecular Vibrational Modes. Ukrainian Journal of Physics, 58(7), 636. https://doi.org/10.15407/ujpe58.07.0636

Issue

Section

Soft matter

Most read articles by the same author(s)