Laser-Excited Excitonic Luminescence of Nanocrystalline TiO2 Powder

Authors

  • L. Kernazhitsky Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. Shymanovska Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • T. Gavrilko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. Naumov Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • L. Fedorenko Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V. Kshnyakin Sumy State University
  • J. Baran Institute of Low Temperature and Structure Research, Polish Academy of Sciences

DOI:

https://doi.org/10.15407/ujpe59.03.0246

Keywords:

titanium dioxide, anatase, rutile, UV-vis spectroscopy, photoluminescence

Abstract

Titanium dioxide (TiO2) nanocrystalline powders were prepared by the thermal hydrolysis method in the form of pure anatase or rutile and were investigated by X-ray diffraction, X-ray fluorescence, FT-Raman spectroscopy, optical absorption, and photoluminescence (PL) methods. PL spectra were studied under the intense UV laser excitation at 337.1 nm (3.68 eV) at room temperature. Some interesting features in the PL spectra including the well-resolved peaks of excitonic and band-band transitions in TiO2 were observed for the first time. It is shown that PL bands with peaks at 2.71–2.81 eV and its phonon replicas in anatase and rutile TiO2 arise from the excitonic e− − ℎ+ recombination via oxygen vacancies. The excitonic peak at 2.91 eV is attributed to the recombination of self-trapped excitons in anatase or free excitons in rutile TiO2. The PL peaks within 3.0–3.3 eV in anatase TiO2 are ascribed to indirect allowed transitions due to the band-band e− − ℎ+ recombination. The peaks at 3.03 and 3.26 eV are attributed to the free exciton emission near the fundamental band edge of rutile and anatase TiO2, respectively.

References

X. Chen and S.S. Mao, Chem. Rev. 107, 2891 (2007).

https://doi.org/10.1021/cr0500535

A. Fujishima, X. Zhang, and D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008).

https://doi.org/10.1016/j.surfrep.2008.10.001

U. Diebold, Surf. Sci. Rep. 48, 53 (2003).

https://doi.org/10.1016/S0167-5729(02)00100-0

M. Anpo and Y. Kubokawa, Rev. Chem. Intermed. 8, 105 (1987).

https://doi.org/10.1007/BF03155662

D.K. Pallotti, E. Orabona, S. Amoruso, C. Aruta, R. Bruzzese, F. Chiarella, S. Tuzi, P. Maddalena, and S. Lettieri, J. Appl. Phys. 114, 043503 (2013).

https://doi.org/10.1063/1.4816251

L. Chiodo, J.M. Garc’ıa-Lastra, A. Iacomino, S. Ossicini, J. Zhao, H. Petek, and A. Rubio, Phys. Rev. B 82, 045207 (2010).

https://doi.org/10.1103/PhysRevB.82.045207

H. Tang, H. Berger, P.E. Schmid, and F. Levy, Solid State Commun. 87, 847 (1993).

https://doi.org/10.1016/0038-1098(93)90427-O

M. Watanabe, T. Hayashi, H. Yagasaki, and S. Sasaki, Int. J. Mod. Phys. B 15, 3997 (2001).

https://doi.org/10.1142/S0217979201009190

L.G.J. De Haart and G. Blasse, J. Solid State Chem. 61, 135 (1986).

https://doi.org/10.1016/0022-4596(86)90015-0

A. Amtout and R. Leonelli, Phys. Rev. B 51, 6842 (1995).

https://doi.org/10.1103/PhysRevB.51.6842

V. Melnyk, V. Shymanovska, G. Puchkovska, T. Bezrodna, and G. Klishevich, J. Mol. Struct. 744-747, 573 (2005).

https://doi.org/10.1016/j.molstruc.2004.12.030

N. Serpone, D. Lawless, and R. Khairutdinov, J. Phys. Chem. 99, 16646 (1995).

https://doi.org/10.1021/j100045a026

L.V. Saraf, S.I. Patil, S.B. Ogale, S.R. Sainkar, and S.T. Kshirsager, Int. J. Mod. Phys. B 12, 2635 (1998).

https://doi.org/10.1142/S0217979298001538

V.V. Shimanovskaya, A.A. Dvernyakova, and V.V. Strelko, Izv. AN SSSR, Neorg. Mater. 24, 1188 (1988).

S.P.S. Porto, P.A. Fleury, and T.C. Damen, Phys. Rev. 154, 522 (1967).

https://doi.org/10.1103/PhysRev.154.522

M. Gotic, M. Ivanda, S. Popovic, S. Music, A. Sekulic, A. Turkovic, and K. Furic, J. Raman Spectr. 28, 555 (1997).

U. Balachandran and N.G. Eror, J. Solid State Chem. 42, 276 (1982).

https://doi.org/10.1016/0022-4596(82)90006-8

J.C. Parker and R.W. Siegel, Appl. Phys. Lett. 57, 943 (1990).

https://doi.org/10.1063/1.104274

A.K. Ghosh, F.G. Wakim, and R.R. Addiss, jr., Phys. Rev. 184, 979 (1969).

https://doi.org/10.1103/PhysRev.184.979

V.M. Khomenko, K. Langer, H. Rager, and A. Fett, Phys. Chem. Miner. 25, 338 (1998).

https://doi.org/10.1007/s002690050124

N. Daude, C. Gout, and C. Jouanin, Phys. Rev. B 15, 3229 (1977).

https://doi.org/10.1103/PhysRevB.15.3229

H. Tang, H. Berger, P.E. Schmid, and F. Levy, Solid State Commun. 92, 267 (1994).

https://doi.org/10.1016/0038-1098(94)90889-3

K. Vos and H.J. Krusemeyer, Solid State Commun. 15, 949 (1975).

https://doi.org/10.1016/0038-1098(74)90701-7

M. Anpo, N. Aikawa, Y. Kubokawa, M. Che, C. Louis, and E. Giamello, J. Phys. Chem. 89, 5017 (1985).

https://doi.org/10.1021/j100269a025

Y. Zhu, C. Ding, G. Ma, and Z. Du, J. Solid State Chem. 139, 124 (1998).

https://doi.org/10.1006/jssc.1998.7816

F. Dong, W. Zhao, Z. Wu, and S. Guo, J. Hazard. Mater. 162, 763 (2009).

https://doi.org/10.1016/j.jhazmat.2008.05.099

T. Sekiya, M. Igarashi, S. Kurita, S. Takekawa, and M. Fujisawa, J. Electron. Spectrosc. Relat. Phenom. 92, 247 (1998).

https://doi.org/10.1016/S0368-2048(98)00130-3

K.V. Baiju, A. Zachariah, S. Shukla, S. Biju, M.L.P. Reddy, and K.G.K. Warrier, Catal. Lett. 130, 130 (2009).

https://doi.org/10.1007/s10562-008-9798-5

N.D. Abazovic, M.I. Comor, M.D. Dramicanin, D.J. Jovanovic, S.P. Ahrenkiel, and J.M. Nedeljkovic, J. Phys. Chem. B 110, 25366 (2006).

https://doi.org/10.1021/jp064454f

H-Y. Lee, W-L. Lan, T.Y. Tseng, D. Hsu, Y-M. Chang, and J.G. Lin, Nanotechnology 20, 315702 (2009).

https://doi.org/10.1088/0957-4484/20/31/315702

P.C. Ricci, C.M. Carbonaro, L. Stagi, M. Salis, A. Casu, S. Enzo, and F. Delogu, J. Phys. Chem. C 117, 7850 (2013).

https://doi.org/10.1021/jp312325h

A.N. Gruzintsev and W.T. Volkov, Semiconduct. 45, 1420 (2011).

https://doi.org/10.1134/S1063782611110121

N.M. Rahman, K.M. Krishna, T. Soga, T. Jimbo, and M. Umeno, J. Phys. Chem. Solids 60, 201 (1999).

https://doi.org/10.1016/S0022-3697(98)00264-9

Y. Lei, D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, and S.X. Wang, Appl. Phys. Lett. 78, 1125 (2001).

https://doi.org/10.1063/1.1350959

A. Janotti, J.B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C.G. Van de Walle, Phys. Rev. B 81, 085212 (2010).

https://doi.org/10.1103/PhysRevB.81.085212

L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, V. Kshnyakin, and T. Khalyavka, J. Solid State Chem. 198, 511 (2013).

https://doi.org/10.1016/j.jssc.2012.11.015

L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, and V. Kshnyakin, Ukr. J. Phys. Opt. 14, 15 (2013).

https://doi.org/10.3116/16091833/14/1/15/2013

Downloads

Published

2018-10-19

How to Cite

Kernazhitsky, L., Shymanovska, V., Gavrilko, T., Naumov, V., Fedorenko, L., Kshnyakin, V., & Baran, J. (2018). Laser-Excited Excitonic Luminescence of Nanocrystalline TiO2 Powder. Ukrainian Journal of Physics, 59(3), 246. https://doi.org/10.15407/ujpe59.03.0246

Issue

Section

Optics, lasers, and quantum electronics

Most read articles by the same author(s)