Structure, Molecular Dynamics, and Thermotropic Properties of Stearic Acid-Ctab Catanionic Surfactants with Different Molar Ratios

Authors

  • J. Baran Institute of Low Temperatures and Structure Research, PAN
  • M. Drozd Institute of Low Temperatures and Structure Research, PAN
  • T. A. Gavrilko Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • V. I. Styopkin Institute of Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe59.03.0303

Keywords:

X-ray diffraction, DSC, FTIR spectroscopy, CTAB, stearic acid, solid phase catanionics

Abstract

Solid phase complexes containing cetyltrimethylammonium bromide (CTAB) [H3C-(CH2)15-N+(CH3)3]Br− (cationic surfactant) and stearic fatty acid (SA) (H3C-(CH2)16-COOH) (anionic surfactant) were prepared with different SA:CTAB molar ratios ranging from 4:1 to 1:4. The prepared catanionic (CA) surfactants are characterized by using X-ray powder diffraction, DSC analysis, and temperature-variable FTIR spectroscopy. It is shown that the obtained CA complexes in the solid state are assembled into a phase-segregated layered structure. The aggregate composition is close to equimolar with the coexisting excessive SA or CTAB phase, which is confirmed by FTIR spectroscopy. Complicated phase behaviors depending on the SA:CTAB molar ratio are observed in these systems. Upon heating, a series of phase transitions occurs, yielding finally an orientationally disordered hexagonal structure. With DSC analysis, the greatly enhanced stability of the complexes (particularly, the 1:1 one) over pure acid (by about 40 ∘C) is found. The structural effects on the phase diagram and the molecular dynamics of SA:CTAB aggregates are discussed.

References

R.M.F. Fernandes, E.F. Marques, B.F.B. Silva, and Y. Wang, J. Mol. Liq. 157, 113 (2010).

https://doi.org/10.1016/j.molliq.2010.08.014

T. Bramer, N. Dew, and K. Edsman, J. Pharm. Pharmacol. 59, 1319 (2007).

https://doi.org/10.1211/jpp.59.10.0001

S.M. Moghimi, A.C. Hunter, and J.C. Murray, FASEB J. 19, 311 (2005).

https://doi.org/10.1096/fj.04-2747rev

T. Zemb, D. Carriere, K. Glinel, M. Hartman, A. Meister, C. Vautrin, N. Delrome, A. Fery, and M. Dubois, Colloids and Surf. A 303, 37 (2007).

https://doi.org/10.1016/j.colsurfa.2007.03.028

A. Stocco, D. Carriere, M. Cottat, and D. Langevin, Langmuir 26, (13), 10663 (2010).

https://doi.org/10.1021/la100954v

Y. Michina, D. Carriere, T. Charpentier, R. Brito, E.F. Marques, J.-P. Douliez, and T. Zemb, J. Phys. Chem. B 114, 1932 (2010).

https://doi.org/10.1021/jp910267v

E. Maurer, L. Belloni, T. Zemb, and D. Carrie're, Langmuir 23, 6554 (2007).

https://doi.org/10.1021/la070184w

C. Sun, M.J. Bojdys, S.M. Clarke, L.D. Harper, A. Jefferson, M.A. Castro, and S. Medina, Langmuir 27, 3626 (2011).

https://doi.org/10.1021/la1048198

Y. Michina, D. Carri`ere, C. Mariet, M. Moskura, P. Berthault, L. Belloni, and T. Zemb, Langmuir 25, 698 (2009).

https://doi.org/10.1021/la8018293

T.A. Gavrilko, G.O. Puchkovska, V.I. Styopkin, T.V. Bezrodna, V.G. Il'jin, J. Baran, and M. Drozd, Ukr. J. Phys. 58, 636 (2013).

https://doi.org/10.15407/ujpe58.07.0636

V. Tomaˇsi’c, S. Popovi’c, and N. Filipovic-Vincekovi’c, J. of Colloid and Interf. Sci. 215, 280 (1999).

M.L. Lynch, F. Wireko, M. Tarek,and M. Klein, J. Phys. Chem. B 105, 552 (2001).

https://doi.org/10.1021/jp002602a

N. Filipovic-Vincekovi’c, I. Puci’c, S. Popovi’c, V. Tomaˇsi’c, and D. Teˇzak, J. of Colloid and Interf. Sci. 188, 396 (1997).

T. Bezrodna, G. Puchkovska, V. Styopkin, J. Baran, M. Drozd, V. Danchuk, and A. Kravchuk, J. of Mol. Struct. 973, 47 (2010).

https://doi.org/10.1016/j.molstruc.2010.03.018

K. Iwamoto, Y. Ohnuki, K. Sawada, and M. Seno, Mol. Cryst. Liq. Cryst. 73, 95 (1981).

https://doi.org/10.1080/00268948108076264

W. Wu, Y. Wang, and H.-S. Wang, Vibr. Spectr. 46, 158 (2008).

https://doi.org/10.1016/j.vibspec.2007.12.012

Q. Wang Q, W. Xu, and B. Zhao, Spectroch. Acta Part A 59, 793 (2003).

A. Imanishi, R. Omoda, and Y. Nakato, Langmuir 22, 1706 (2006).

https://doi.org/10.1021/la052495h

D. Hadˇzi, J. Grdadolnik, and A. Meden, J. of Mol. Struct. 381, 9 (1996).

D.C. Lee and D. Chapman, Biosci. Reports 6(3), 235 (1986).

https://doi.org/10.1007/BF01115153

J.B. Peng, G.T. Barnes, and I.R. Gentle, Adv. in Colloid and Interf. Sci. 91, 163 (2001).

B.F.B. Silva, E.F. Marques, U. Olsson, and R. Pons, Langmuir 26(5), 3058 (2010).

https://doi.org/10.1021/la902963k

G.O. Puchkovska, S.P. Makarenko, V.D. Danchuk, and A.P. Kravchuk, J. of Mol. Struct. 744-747, 53 (2005).

https://doi.org/10.1016/j.molstruc.2005.01.002

L.J. Bellami, The Infra-Red Spectra of Complex Molecules (Wiley, New York, 1958).

G.O. Puchkovska, Manifestation of Structure, Dynamics, and Polymorphism in Vibrational Spectra of Molecular crystals, Thesis of the Doctor Dissertation in Phys. and Math. (Kyiv, 1988).

S.P. Makarenko, G.O. Puchkovska, E.N. Kotelnikova, and S.K. Filatov, J. of Mol. Struct. 704, (1-3), 25 (2004).

https://doi.org/10.1016/j.molstruc.2004.01.046

Downloads

Published

2018-10-19

How to Cite

Baran, J., Drozd, M., Gavrilko, T. A., & Styopkin, V. I. (2018). Structure, Molecular Dynamics, and Thermotropic Properties of Stearic Acid-Ctab Catanionic Surfactants with Different Molar Ratios. Ukrainian Journal of Physics, 59(3), 303. https://doi.org/10.15407/ujpe59.03.0303

Issue

Section

Solid matter

Most read articles by the same author(s)